- Databases
- Spacetime database
- Krasnikov tube
Krasnikov tube
The Krasnikov tube is an attempt to modify the Alcubierre warp drive metric in a way that does not violate the Flux Energy Condition (the matter used to support it does not go faster than light itself).
1. History
2. Topology
The Krasnikov tube has the topology $\mathbb{R}^n$.
3. Metrics and coordinates
The two-dimensional case
\begin{eqnarray}
ds^2 &=& - (dt - dx) (dt + k(x,t) dx)\\
&=& -dt^2 + (1 - k(x,t)) dx dt + k(x,t) dx^2
\end{eqnarray}
\begin{equation}
k(x,t) = 1 - (2 - \delta) \theta_\varepsilon(t-x) [\theta_\varepsilon(x) - \theta_\varepsilon(x + \varepsilon - D)]
\end{equation}
\begin{equation}
\theta_\varepsilon(x) = \begin{cases}
1 & x > \varepsilon \\
0 & x < 0
\end{cases}
\end{equation}
The four-dimensional case
\begin{equation}
ds^2 = -dt^2 + (1 - k(x,t, \rho)) dx dt + k(x,t, \rho) dx^2 + d\rho^2 + \rho^2 d\phi^2
\end{equation}
\begin{equation}
k(x,t) = 1 - (2 - \delta) \theta_\varepsilon(\rho_{max} - \rho) \theta_\varepsilon(t-x - \rho) [\theta_\varepsilon(x) - \theta_\varepsilon(x + \varepsilon - D)]
\end{equation}
4. Tensor quantities
5. Symmetries
6. Stress-energy tensor
7. Curves
8. Equations
9. Causal structure
10. Asymptotic structure
11. Energy conditions
12. Limits and related spacetimes
13. Misc.
Bibliography