- Databases
- Spacetime database
- Kerr
Kerr
1. History
2. Topology
3. Metrics and coordinates
Kerr coordinates
\begin{eqnarray}
ds^2 &=& -\left[ 1 - \frac{2mr}{r^2 + a^2 \cos^2 \theta} \right] (du + a \sin^2 \theta d\varphi)^2 \\
&&+ 2(du + a \sin^2 \theta d\varphi) (dr + a \sin^2 \theta d\varphi)\\
&&+ (r^2 + a^2 \cos^2 \theta) (d\theta^2 + \sin^2 \theta d\varphi^2)
\end{eqnarray}
Kerr-Schild "Cartesian" coordinates
\begin{eqnarray}
ds^2 &=& -dt^2 + dx^2 + dy^2 + dz^2 \\
&& + \frac{2mr^3}{r^4 + a^2 z^2} \left[ dt + \frac{r(x dx + y dy)}{a^2 + r^2} + \frac{a(y dx - x dy)}{a^2 + r^2} + \frac{z}{r} dz \right]^2
\end{eqnarray}
$$x^2 + y^2 + z^2 = r^2 + a^2 \left[ 1 - \frac{z^2}r^2{} \right]$$
Boyer-Lindquist coordinates
\begin{eqnarray}
ds^2 &=& -dt^2 + dr^2 + 2a \sin^2 \theta dr d\varphi + (r^2 + a^2 \cos^2 \theta) d\theta^2\\
&&+ (r^2 + a^2)\sin^2 \theta d\varphi^2 + \frac{2mr}{r^2 + a^2 \cos^2 \theta} (dt + dr + a \sin^2 \theta d\varphi)^2
\end{eqnarray}
Rational polynomial coordinates
\begin{eqnarray}
ds^2 &=& - \left[ 1 - \frac{2mr}{r^2 + a^2 \chi^2} \right] dt^2 - \frac{4amr(1 - \chi^2)}{r^2 + a^2 \chi^2} d\varphi dt\\
&& + \frac{r^2 + a^2 \chi^2}{r^2 - 2mr + a^2} dr^2 + (r^2 + a^2 \chi^2) \frac{d\chi^2}{1 - \chi^2}\\
&& + (1 - \chi^2) \left[ r^2 + a^2 + \frac{2ma^2 r (1-\chi^2)}{r^2 + a^2 \chi^2} \right] d\varphi^2
\end{eqnarray}
Doran coordinates
\begin{eqnarray}
ds^2 &=& - dt^2 + (r^2 + a^2 \cos^2 \theta) d\theta^2 + (r^2 + a^2) \sin^2 \theta d\varphi^2\\
&& + \frac{r^2 + a^2 \cos^2 \theta}{r^2 + a^2} \left[ dr + \frac{\sqrt{2mr(r^2 + a^2)}}{r^2 + a^2 \cos^2 \theta} (dt - a \sin^2 \theta d\varphi) \right]^2
\end{eqnarray}
4. Tensor quantities
5. Symmetries
6. Stress-energy tensor
7. Curves
8. Equations
9. Causal structure
10. Asymptotic structure
11. Energy conditions
12. Limits and related spacetimes
13. Misc.
Bibliography