- Databases
- Spacetime database
- Ellis-Bronnikov drainhole
Ellis-Bronnikov drainhole
The Ellis drainhole is the oldest example of a traversable wormhole. It's a class of spherically symmetric static spacetimes parametrized by $a$, the radius of the throat.
1. History
2. Topology
The Ellis-Bronnikov drainhole has the topology $\mathbb{R}^2 \times S^2$.
3. Metrics and coordinates
Schwarzschild coordinates
Proper time coordinates
$$ds^2 = -dt^2 + dl^2 + (l^2 + a^2) (d\theta^2 + \sin^2 \theta d\varphi^2)$$
4. Tensor quantities
In Schwarzschild coordinates
In proper time coordinates
5. Symmetries
6. Stress-energy tensor
7. Curves
In Schwarzschild coordinates
The geodesic equation
In proper time coordinates
The geodesic equation
8. Equations
In Schwarzschild coordinates
In proper time coordinates
9. Causal structure
10. Asymptotic structure
11. Energy conditions
12. Limits and related spacetimes
13. Misc.
Bibliography