Geometrical Structures of Space-Time in General Relativity¹

Ignacio Sánchez-Rodríguez

Department of Geometry and Topology, University of Granada, E-18071 Granada, Spain

Abstract. Space-Time in general relativity is a dynamical entity because it is subject to the Einstein field equations. The space-time metric provides different geometrical structures: conformal, volume, projective and linear connection. A deep understanding of them has consequences on the dynamical role played by geometry. We present a unified description of those geometrical structures, with a standard criterion of naturalness, and then we establish relationships among them and try to clarify the meaning of associated geometric magnitudes.

Keywords: Volume of space-time, linear connection, Lorentzian conformal structure, projective differential geometry.

PACS: 04.20.Cv, 02.20.Qs, 02.40.Hw.

INTRODUCTION

The space-time of general relativity (GR), from the point of view of differential geometry, is a 4-dimensional manifold M, with a C^{∞} atlas \mathscr{A} . The atlas is the *differential structure* of our space-time.

The *principle of general covariance* of GR establishes the invariance by diffeomorphisms. This leads us to think that a *physical event* is not a point, but a geometrical structure on a neighborhood. The *fundamental geometrical structures* that we can consider defined in the space-time are:

- Volume (4-form)
- Conformal structure (Lorentzian)
- Metric (Lorentzian)
- Linear connection (symmetric)
- Projective structure

They are defined in terms of the *most primitive* differential structure, via the concept of *G*-structure. Volume, conformal structure and metric are *first order G-structures*. But linear connection and projective structure are *second order G-structures*.

For certain G's, *classified in* [8], every first order G-structure lead to a unique second order structure, named its *prolongation*. This is the case for the volume, metric and conformal structures.

¹ The following article has been accepted by AIP Conference Proceedings. After it is published, it will be found at *http://proceedings.aip.org/proceedings*.

FRAME BUNDLES

The *r*-th order frame bundle $\mathscr{F}^r M$ is a quotient space of a subset of \mathscr{A} [13, p. 38]. An *r*-frame, $j^r \varphi \in \mathscr{F}^r M$ is an *r*-jet at 0, where $x = \varphi^{-1}$ is a chart with 0 as a target.

We restrict our interest to first and second order. The first order frame bundle \mathscr{F}^1M is usually identified with the *linear frame bundle LM*. For a better understanding of the second order frame bundle consider *LLM*, the linear bundle of *LM*. There is a *canonical inclusion* $\mathscr{F}^2M \hookrightarrow LLM$, $j^2\varphi \mapsto j^1\tilde{\varphi}$, where $\tilde{\varphi}$ is the diffeomorphism induced by φ , between neighborhoods of $0 \in \mathbb{R}^{n+n^2}$ and $j^1\varphi \in LM$ [10, p. 139].

Let J^1LM be the bundle of 1-*jets of (local) sections* of LM and s be a section of LM. Each $j_p^1 s$ is characterized by the *transversal n-subspace* $H_l = s_*(T_pM) \subset T_lLM$ [6]. Then, there is also a *canonical inclusion* $J^1LM \hookrightarrow LLM$, $j_p^1 s \mapsto z$, where z is the basis of T_lLM , whose first n vectors span H_l and correspond to the usual basis of \mathbb{R}^n , via the *canonical form of* LM, and the last n^2 vectors are the fundamental vectors corresponding to the standard basis of $\mathfrak{gl}(n, \mathbb{R})$ [9].

By the previous canonical maps, it happens that \mathscr{F}^2M is mapped one to one into the subset of J^1LM , corresponding with the *torsion-free transversal n-subspaces* in *TLM*.

Theorem 1 We have the canonical embeddings: [13, p. 54]

$$\mathscr{F}^2M \hookrightarrow J^1LM \hookrightarrow LLM$$

The *r*-th order frame bundles are principal bundles. They are fundamental because every *natural bundle*, in the categorial approach, can be described as an associated bundle to some $\mathcal{F}^r M$ [12] and the so-called *geometrical objects* can be identified with sections of those associated bundles.

STRUCTURAL GROUPS

The structural group of the principal bundle $\mathscr{F}^r M$ is the group G_n^r of *r*-jets at 0 of diffeomorphisms of \mathbb{R}^n , $j_0^r \phi$, with $\phi(0) = 0$.

The group G_n^1 is identified with $GL(n, \mathbf{R})$. Then there is a canonical inclusion of G_n^1 into G_n^r , if we take the *r*-jet at 0 of every linear map of \mathbf{R}^n . Furthermore, G_n^r is the *semidirect product* of G_n^1 with a nilpotent normal subgroup [16]. Let us see this decomposition for G_n^2 . We consider the underlying additive group of the vector space S_n^2 of symmetric bilinear maps of $\mathbf{R}^n \times \mathbf{R}^n$ into \mathbf{R}^n . Then there is a monomorphism $\iota: S_n^2 \to G_n^2$ defined by $\iota(s) = j_0^2 \phi$, with $s = (s_{jk}^i)$ and $\phi(u^i) := (u^i + \frac{1}{2}s_{jk}^i u^j u^k)$.

Theorem 2 We obtain the split exact sequence of groups:

$$0 \rightarrow S_n^2 \xrightarrow{\iota} G_n^2 \underset{\scriptstyle \supset}{\rightleftharpoons} G_n^1 \rightarrow 1$$

It makes G_n^2 isomorphic to the semidirect product $G_n^1 \rtimes S_n^2$, whose multiplication rule is $(a,s)(b,t) := (ab, b^{-1}s(b,b) + t)$. The isomorphism is given by $j_0^2 \phi \mapsto (D\phi|_0, D\phi|_0^{-1}D^2\phi|_0)$.

G-STRUCTURES

We define an *r*-th order *G*-structure on *M* as a reduction of $\mathscr{F}^r M$ to a subgroup $G \subset G_n^r$ [10]. This idea of geometrical structure on *M* concerns the classification of charts in \mathscr{A} , when the meaningful classes are chosen guided by an structural group.

We exemplify the concept of a *G*-structure studying a volume on a manifold, which rarely is treated this way [3]. Let us define a *volume* on *M* as a first order *G*-structure *V*, with $G = SL_n^{\pm} := \{a \in GL(n, \mathbb{R}) : |\det a| = 1\}$. For an orientable *M*, *V* has two components for two $SL(n, \mathbb{R})$ -structures, for two equal, except sign, *volume n-forms*. For a general *M*, volume corresponds to *odd type n-form*, as in [4, pp. 21-27].

From *principal bundle theory* [9], SL_n^{\pm} -structures are the sections of the *bundle asso-ciated* with *LM* and the left action of G_n^1 on G_n^1/SL_n^{\pm} . This is the *volume bundle*, $\mathcal{V}M$. Furthermore, the sections of $\mathcal{V}M$ correspond to G_n^1 -equivariant functions f of *LM* to G_n^1/SL_n^{\pm} . The equivariance condition is $f(la) = |\det a|^{-1/n} I_n \cdot f(l), \forall a \in G_n^1$.

We have the bijections:

Volumes on
$$M \iff \operatorname{Sec} \mathscr{V}M \iff C^{\infty}_{\operatorname{eq}}(LM, \operatorname{G}^{1}_{n}/\operatorname{SL}^{\pm}_{n})$$

The isomorphisms $G_n^1/SL_n^{\pm} \simeq H_n$, with $H_n := \{kI_n : k > 0\}$ and $H_n \simeq \mathbb{R}^+$, the multiplicative group of positive numbers, allow to represent a volume as an *(odd) scalar density* on *M*.

SECOND ORDER STRUCTURES

We can view a symmetric linear connection (SLC) on M as a G_n^1 -structure of second order. A SLC is also the image of an *injective homomorphism* of LM to \mathscr{F}^2M [10].

From the *principal bundle theory* [9], SLC's on M are sections of the *SLC bundle*, $\mathscr{D}M$, associated with \mathscr{F}^2M and the action of G_n^2 on $G_n^2/G_n^1 \simeq S_n^2$. Furthermore, each SLC, ∇ , corresponds to a G_n^2 -equivariant function $f^{\nabla} : \mathscr{F}^2M \to S_n^2$, verifying $f^{\nabla}(z(a,s)) = a^{-1}f^{\nabla}(z)(a,a) + s$.

We have the bijections:

SLC's on
$$M \quad \longleftrightarrow \quad \operatorname{Sec} \mathscr{D}M \quad \longleftrightarrow \quad C^{\infty}_{\operatorname{eq}}(\mathscr{F}^2M, \mathbf{S}^2_n)$$

Given two SLC's, ∇ and $\widehat{\nabla}$, the difference function $f^{\nabla} - f^{\widehat{\nabla}} \colon \mathscr{F}^2 M \to S_n^2$ verifies $z(a,s) \mapsto a^{-1}(f^{\nabla}(z) - f^{\widehat{\nabla}}(z))(a,a)$. Then, it is projectable to a function $f \colon LM \to S_n^2$ verifying $f(la) = a^{-1}f(l)(a,a)$, which corresponds to a tensor $\rho = (\rho_{jk}^i)$ on M.

A projective structure (PS) is an equivalence class of SLC's which have the same family of pregeodesics. This is the cornerstone to understand the freely falling bodies in GR [5]. We can define a PS on M as a second order $G_n^1 \rtimes \mathfrak{p}$ -structure, Q, with $\mathfrak{p} := \{s \in S_n^2 : s_{jk}^i = \delta_j^i \mu_k + \mu_j \delta_k^i, \ \mu = (\mu_i) \in \mathbf{R}^{n*}\}.$

Now, for two SLC *included* in the same PS (i.e. literally $\nabla, \widehat{\nabla} \subset Q$) the tensor ρ , expressing *their difference*, is determined by the contraction $C(\rho) = (\rho_{si}^s)$, which is *an 1-form* on *M*.

PROLONGATIONS

Let *B* be a *first order G-structure*. A connection in *B* is a distribution *H* of transversal *n*-subspaces, $H_l \subset T_l B$. If the subspaces are *free-torsion*, these determine a *second order G-structure*, whose G_n^1 -extension [7, p. 206] is a SLC on *M*. Then, we say that *B admits a SLC*. Let us give two examples:

- A SLC and a parallel volume is an *equiaffine structure* on M [11]; hence, it is a second order SL_n^{\pm} -structure.
- A SLC compatible with a conformal structure is a *Weyl structure*; hence, it is a second order CO(*n*)-structure [2].

For a linear group *G*, let \mathfrak{g} denote the Lie algebra of *G*. The *first prolongation of* \mathfrak{g} is defined by $\mathfrak{g}_1 := S_n^2 \cap L(\mathbb{R}^n, \mathfrak{g})$. We obtain that $G \rtimes \mathfrak{g}_1$ is a subgroup of $G_n^1 \rtimes S_n^2$, and hence, a subgroup of G_n^2 (see more details in [1]).

Theorem 3 Let $B \subset LM$ be a *G*-structure, admitting a SLC. Then, the set of 2-frames, corresponding with torsion-free transversal n-subspaces which are included in TB, is a reduction of \mathscr{F}^2M to $G \rtimes \mathfrak{g}_1$. It is named the prolongation of *B* and denoted by B^2 (for a proof, see [13, pp. 150-155]).

Let us give a well known example: if *B* is an O(n)-structure, B^2 is isomorphic to *B* on account of $\mathfrak{o}(n)_1 = \{0\}$; this explain the uniqueness of Levi-Civita connection.

There is an important theorem [8] *classifying the groups G* such that *every G-structure admits a SLC*: only the groups of *volume, metric and conformal* structures, and a class of groups preserving an 1-dimensional distribution, have this property.

CONCLUDING REMARKS

We have done a unified description of the geometrical structures that have been used by GR to define intrinsic properties of the space-time. The unifying criterion, we used for it, not only is natural in the sense that geometric objects are sections of bundles associated with the \mathscr{F}^rM frame bundles [16], but also in the sense that the objects themselves are reductions of \mathscr{F}^rM . Therefore, we have not considered a linear connection with torsion because it is a section of an associated bundle of \mathscr{F}^2M , but not a reduction.

We have tried to clarify the relationships between the structures involved. Only simple relations, such as intersection, inclusion, reduction and extension, have been used for it, on account of the previous *prolongation* of *G*-structures admitting SLC. For instance, it follows readily from the last section that the classical *equiaffine* or *Weyl structures* can be defined as the intersection of a SLC with the prolongation of a volume or a conformal structure, respectively.

Recently, some of my research [14] have been taken into consideration for one of the lines of thought about quantum gravity [15]. This contribution is a set of my latest reflections and conclusions about geometrical structures with an eye on the applications to physics.

ACKNOWLEDGMENTS

The author would like to thank the IFWGP'07 organizers for their kind invitation to attend this Workshop and to present this communication. I wishes to acknowledge gratefully Dr. John Stachel the attention paid to my work.

This work has been partially supported by the Junta de Andalucía P.A.I.: FQM-324.

REFERENCES

- E. Aguirre-Dabán, and I. Sánchez-Rodríguez, "Explicit formulas for the 3-jet lift of a matrix group. Aplications to conformal geometry" in *Proc. 1st Int. Meeting on Geometry and Topology*, edited by A. Pereira et al., Braga, Universidade do Minho, 1998, pp. 191–205. Available online: http://www.emis.ams.org/proceedings/Braga97/23.html
- 2. R. A. Coleman, and H. Korte, "Spacetime G structures and their prolongations", J. Math. Phys. 22, 2598–2611 (1981).
- 3. M. Crampin, and D. J. Saunders, "Projective connections", *Journal of Geometry and Physics* 57, 691–727 (2007).
- 4. G. De Rham, Variétés différentiables, second edition, Hermann, Paris, 1960.
- 5. J. Ehlers, F. A. E. Pirani, and A. Schild, "The geometry of free fall and light propagation" in *General Relativity*, edited by L. O'Raifeartaigh, Clarendon, Oxford, 1972, pp. 63–84.
- 6. P. L. Garcia, "Connections and 1-jet fiber bundles", Rend. Sem. Mat. Padova 47, 227–242 (1972).
- W. Greub, S. Halperin, and R. Vanstone, *Connections, Curvature and Cohomology*, Vol. II, Academic Press, New York, 1973.
- 8. S. Kobayashi, and T. Nagano, "On a fundamental theorem of Weyl-Cartan on *G*-structures", *J. Math. Soc. Japan* **17**, 84–101 (1965).
- 9. S. Kobayashi, and K. Nomizu, *Foundations of Differential Geometry*, Vol. I, John Wiley Interscience, New York, 1963.
- 10. S. Kobayashi, Transformation Groups in Differential Geometry, Springer, Heidelberg, 1972.
- 11. K. Nomizu, and T. Sasaki, *Affine differential geometry*, Cambridge University Press, Cambridge, 1994.
- 12. R. S. Palais, and C. L. Terng, "Natural Bundles have a Finite Order", Topology 16, 271–277 (1978).
- 13. I. Sánchez Rodríguez, *Conexiones en el fibrado de referencias de segundo orden. Conexiones conformes*, Doctoral Thesis, Complutense University of Madrid, Madrid, 1994. Available online: http://www.ugr.es/local/ignacios/tesis.pdf
- I. Sánchez-Rodríguez, "Intersection of G-structures of first or second order" in *Differential geometry* and its applications. Proceedings of the 8th International Conference, Opava, Czech Republic, August 27-31, 2001, edited by O. Kowalski et al., Silesian University at Opava, Opava, 2001, pp. 135–140.
- 15. J. Stachel, "Structure, individuality and quantum gravity" in *The Structural Foundations of Quantum Gravity*, edited by D. Rickles et al., Oxford University Press, Clarendon, Oxford, 2006, pp. 53–82.
- 16. C. L. Terng, "Natural vector bundles and natural differential operators", *Am. J. Math.* **100**, 775–828 (1978).