
Jet bundles and path structures
R. A. Coleman and H. Korte 
 
Citation: Journal of Mathematical Physics 21, 1340 (1980); doi: 10.1063/1.524598 
View online: http://dx.doi.org/10.1063/1.524598 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/21/6?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Poisson structures on the cotangent bundle of a Lie group or a principle bundle and their reductions 
J. Math. Phys. 35, 4909 (1994); 10.1063/1.530822 
 
Symplectic structure and gauge invariance on the cotangent bundle 
J. Math. Phys. 35, 426 (1994); 10.1063/1.530790 
 
Bundle structures in the Kerr spacetime 
J. Math. Phys. 28, 859 (1987); 10.1063/1.527577 
 
Erratum: Jet bundles and path structures [J. Math. Phys. 2 1, 1340 (1980)] 
J. Math. Phys. 23, 345 (1982); 10.1063/1.525357 
 
Fibrebundle structure of thermodynamic states 
J. Math. Phys. 18, 1791 (1977); 10.1063/1.523490 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.114.34.22 On: Mon, 24 Nov 2014 01:02:00

http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1300172313/x01/AIP-PT/CiSE_JMPArticleDL_111914/Awareness_LibraryF.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=R.+A.+Coleman&option1=author
http://scitation.aip.org/search?value1=H.+Korte&option1=author
http://scitation.aip.org/content/aip/journal/jmp?ver=pdfcov
http://dx.doi.org/10.1063/1.524598
http://scitation.aip.org/content/aip/journal/jmp/21/6?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/35/9/10.1063/1.530822?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/35/1/10.1063/1.530790?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/28/4/10.1063/1.527577?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/23/2/10.1063/1.525357?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/18/9/10.1063/1.523490?ver=pdfcov


Jet bundles and path structures8
) 

R. A. Coleman 
Department of Physics. University of Toronto. Toronto. Ontario. Canada M5S lA 7 
and Mathematics and Physics Department. Ryerson Poly technical Institute. 50 Gould St .• Toronto. Ontario. Canada M5B 1 E8 

H.Korte 
Department of Philosophy. University of Western Ontario. London. Ontario. Canada 
and Department of Philosophy. University of Regina. Regina. Saskatchewan. Canada 

(Received 27 March 1979; accepted for publication 25 June 1979) 

The analysis of path structures is formulated in terms of jet bundles with particular emphasis on 
the transformation laws and symmetry properties of geodesic path structures. The role played by 
geodesic path structures in the constructive axioms of Ehlers, Pirani, and Schild for GRT is 
discussed and it is shown that these axioms are decidable. 

1. INTRODUCTION 

Ehlers, Pirani, and Schild 1 (EPS) proposed a set of con­
structive axioms for general relativity theory based on the 
local behavior of arbitrary massive particles, freely falling 
massive particles, and light propagation. The analysis of the 
aspect of spacetime structure revealed by the paths followed 
by freely falling massive particles leads to the study of path 
structures on manifolds. Ehlers and Kohler2 have presented 
an analysis of path structures and their symmetries using the 
standard formalism of the first and second order tangent 
bundles, T (M) and T (T (M», of the spacetime manifold M. 
However, the simplest and most natural description of struc­
tures of higher order contact is in terms of the jets and jet 
bundles of Ehresmann. J 

In the present paper, the analysis of curve and path 
structures is developed using jets. A great simplification, 
both conceptual and technical, results. Conceptually, the 
elements of the second order jet bundle J 2(Ro, M) have a 
direct interpretation as second degree Taylor approxima­
tions to curves through a given point of M. The derivation of 
the coordinate, parameter, and active transformation laws is 
a straightforward exercise in the application of the chain 
law. In contrast, the elements of T(T(M» which injet lan­
guage is J l(Ro,J l(Ro, M», are more complicated. The de­
sired elements of the sub-bundle J 2(Ro, M) of J 1 (lRo ,J l(Ro, 
M», must in the standard approach be selected by imposing 
the spray condition on theelementsofJ l(Ro,J l(Ro, M». Of 
course, the interpretation of the elements of the subbundle 
and the discussion of their coordinate, parameter, and active 
transformation laws is considerably obscured by the use of 
this indirect approach. The definition and analysis of sprays, 
called acceleration fields in this paper, are also much simpli­
fied by using jets. Moreover, the relationship between these 
fields and second order differential equations becomes trans­
parent. Finally, the discussion of the corresponding struc­
tures for paths is very difficult if the standard approach is 
used. The discussion in terms of jets is easy in comparison. In 
the case of geodesic acceleration fields and the projective 
analog, geodesic directing fields, the description in terms of 
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jets is so much simpler that such fields are readily obtained as 
cross sections of appropriate fiber bundles. The bundle of 
geodesic directing fields, f§ S (M), (4.22), provides an elegant 
coordinate free formulation4 of the second projective axiom 
ofEPS; namely, the directing field which governs the motion 
of freely falling particles is a cross section of f§ S (M). 

The definitions and notations for jets and jet bundles are 
established in Sec. 2. In Sec. 3, curve structures, acceleration 
fields, and the one to one relationship between them are dis­
cussed. Also, geodesic acceleration fields are defined and it is 
shown how these may be obtained as cross sections of a fiber 
bundle. The analogous discussion for path structures and 
directing fields is presented in Sec. 4. 

The definitions of active transformations and symme­
tries of curve and path structures are given in Sec. 5. The 
discussion is presented for the three customary levels of anal­
ysis, global, local, and micro (infinitesimal neighborhood of 
a point p of M). The formulas for the microtransformations 
and microsymmetry conditions are particularly relevant for 
this paper and are presented in detail. These results are then 
used in Sec. 6 to prove some theorems concerning geodesic 
curve and path structures and their microsymmetry groups. 
Theorem 4 states that a curve structure is geodesic if and 
only if its microsymmetry group is isomorphic to GL1(n). 
The maximal microsymmetry group of a geodesic path 
structure is derived in Theorem 5. In comparison with the 
standard treatment of this projective group, the jet bundle 
language offers a marked improvement in conceptual clar­
ity. Theorems 6 and 7 correspond to Theorems 2 and 3 of 
Ehlers and Kohler.2 The first of these theorems states that a 
path structure which admits a microsymmetry transforma­
tion at every point whose first order part is a dilatation other 
than the identity is geodesic. The proof given by Ehlers and 
Kohler is reproduced for completeness. The second theorem 
states that a path structure which is maximally isotropic to 
first order in the sense that it admits, at every point of the 
manifold, a microsymmetry group whose first order part 
acts transitively on the space of one-directions]]) ~ (M) is geo­
desic and conversely. Ehlers and Kohler present the proof of 
this theorem only for analytic path structures and for mani­
fold dimension n = 2. The proof presented below does not 
require analyticity (only C 6

), and the organization of the 
proof is sufficiently improved so that it can be written down 

1340 J. Math. Phys. 21 (6), June 1980 0022-2488/80/061340-12$1.00 © 1980 American Institute of Physics 1340 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.114.34.22 On: Mon, 24 Nov 2014 01:02:00



in reasonably concise form for the case of arbitrary manifold 
dimension n. 

The geodesic method of EPS has recently been criti­
cized.5-8 It has been argued that the geodesic method is beset 
with logical and derivatively with epistemological circular­
ity. Specifically, criteria that determine which bodies are 
suitable as freely falling test bodies and permit their identifi­
cation presuppose metrical considerations, thereby leading 
to circularity. A particle which has a gravitational multipole 
structure will not in general travel along a timelike geodesic 
even if no forces act on it. Without already knowing the 
spacetime structure, how are we to know which particles are 
gravitatioDl,l1 monopoles and which are not? 

In Sec. 7, these criticisms are briefly analyzed. It is 
shown that they rest on a serious misunderstanding of the 
nature of inertial laws and the geodesic method. 

Morever, using radar coordinates and the concept of a 
directing field, it is shown that the criticisms are without any 
substance; that is, it is shown that the truth of the projective 
axioms concerning free fall motion is epistemically decidable 
in a noncircular way. 

2. JETS AND JET BUNDLES 

Let M and N be C 00 differentiable manifolds of dimen­
sions m and n, respectively. Let (U,x) p and (V,Y)q be charts 
for neighborhoods pEM and qEN. The k-jet j~ (f) of a C k 
map f:M -- N with source pEM and target q = f (p)EN is 
the equivalence class of such maps which agree at the point 
pEM and for which the derivatives of the maps yO f Ox - 1 

agree at x(p) up to and including order k. That the equiv­
alence is not dependent on the choice of coordinate charts 
follows from the chain rule. The set of such k- jets is denoted 
by J k(M p ,Nq ) • If the source, target or both are unrestricted, 
the sets of k- jets are denoted by J k(M,Nq) ,J k(M p , N), and 
Jk(M,N),respectively. These four sets of k- jets are differen­
tiable manifolds, and the coefficients of the k th order Taylor 
expansion of yo f Ox - 1 may be used as local coordinates of 
the k- jet j~ (I) . Moreover, the source and target maps u: 
J k(M,N) __ M and r:J k(M,N) __ N defined by 

u(j~(f» = p, 

r(j~(f» = f(p) 

are differentiable. 

(2.1) 

If m = n, denote by D(M p,Nq) the set of diffeomor­
ph isms f:M -- N such that f(p) = q, and by JkD (M p , 

N q) the set ofk- jets j~(f) . The Lie group GLk(n) is defined 
to be the set of k- jets J k D(R ~ ,R ~) with the group product 
defined by k- jet composition 

j~(f 1)0 j~(f 2) = j~(f 10 f 2) . (2.2) 

This group acts on J k(Ro ,~) , the set of k- jets of 
curves through OERn 

, according to 

j~(f)o j~(y) = j~(foy) , (2.3) 

where y:R __ Rn and y(O) = O. 

A local grid for pEM is a diffeomorphism ;:lRn 
--; I- (Rn) CMsuch that; (0) = p.Ak-gridisak-jetj~(;) 
of a grid. Let Z k (M ) denote the set of k-grids for all pEM. 
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Z k (M) is the total space of a principal fiber bundle (PFB) 

!l'k(M) = (Zk(M),1Tzk,M,GLk(n», (2.4) 

w here the differentiable projection map 1T Zk :Z k(M) __ Mis 
defined by 

1T Zk (j~(;» = ; (0) . (2.5) 

In view of the action (2.3) ofGL k(n) onJ\Ro ,R~), one 
may construct the associated fiber bundle (AFB)9 of k-arcs 
onM, 
J#k(M) = (Jk(lRo,M),1Tk,M,Jk(Ro,lR~),!l'k(M», (2.6) 

with typical fiber J k(Ro,~) . As the notation indicates, the 
elements of the total space J k(Ro ,M) may be more directly 
obtained as the k- jets of curves y:R __ M in M. The projec­
tion map 1Tk :Jk(Ro,M) __ M is defined by 

1Tk(j~(y» = y(O). (2.7) 

There is a sequence of natural, differentiable projection 
maps n{:Jk(Ro, M) --J/(Ro, M) for 1<1 <k defined by 

n{(j~(y» = j~(y). (2.8) 

In many cases of physical interest, the parameter of a 
curve is either arbitrary or not specified in advance; for ex­
ample, in general relativity the world line of a freely falling 
test particle is determined by a point on it and its direction (a 
nonzero multiple of its tangent vector) at that point. Since 
the tangent vectors of physical particles are everywhere non­
zero, curves such as y:R __ R2 with 

(2.9) 

need not be considered in the definition of a path ("param­
eter free curve") for the purposes of this paper. 

A parameter transformation is an element of D (R,R). 
The k-jetsj~Vt)E.!kD(RojRo) for JlED(Ro,Ro) form a group 
p k where the group product is k-jet composition. 

Define an equivalence relation in the set of curves with 
nowhere vanishing tangent vectors by f - riff 3JlED(Ro, 
Ro), f = yOJl. Then a path is an equivalence class of such 
curves. 

There is an action of the group p k on J k (Ro,~) and on 
Jk(Ro, M) which will be denoted by Rk in both cases. It is 
given by 

Rk (j~(r),j~Vt» = j~(r)o j~Vt) . (2.10) 

This right action is compatible with the structure of the 
bundle .xffk(M); that is, Rko l(f) = l(f)oRk for 
f:M -- M and 1Tk oRk = 1Tk and n{ oRk = R/ on{ . Denote 
by Ok and Ok(M) the sets of equivalence classes of elements 
of Jk(Ro,~) and Jk(Ro, M) defined by Rk . These equiv­
alence classes will be called k-directions (or simply direc­
tions for k = 1). Note that 2-directions are called special 
directions in Ehlers and Kohler. 2 

For k > 1, the manifold of k-directions Dk(M) is the to­
tal space of an. AFB with typical fiber Ok and PFB fIk(M) 

f2Jk(M) = (Ok (M), 1Tk,M,O\!l'k(M» . (2.11) 

For k = 1, the structure group of the bundle is PG(n), 
the projective group in n dimensions. PG(n) is the factor 
group ofGL(n) with respect to the invariant subgroup of 
elements of the form (At5 5) with A:;60 called dilatations. The 
appropriate PFB is the bundle of projective I-grids. 
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9 .;rl(M) = (PZ I(M),1Tzl ,M,PG(n» , (2.12) 

where the elements of the fiber PZ! (M) at pEM are equiv­
alence classes of I-grids in Z !(M) related by a dilatation. 
The AFB of I-directions is then 

(2.13) 

The above considerations do not require C '" manifolds. 
A differentiability class C r for some finite r would be suffi­
cient. In the following, it is assumed that mappings are suffi­
ciently differentiable that any derivative maps which occur 
are at least C 1 • It is also assumed that the base manifold M 
has dimension n '> 2. 

3. CURVE STRUCTURES 
Following Ehlers and Kohler,2 we restrict the concept 

ofa curve inM, y:1 - M, where lis an open interval ofIR by 
requiring: For every Sl ,S2 El such that y(SI) = y(sz) and 
y(sl) = y(S2) , there exist open intervals 11 3s, and 12 3S2 and 
a smooth invertible map WI, - 1z such that p(s, )1sz and 
y11, = (yop) II, . 

A curve which retraces itself periodically such as 
y:R_Rz 

y(s) = (coss, sins) (3.1) 

is not excluded, nor is a curve which touches itself or retraces 
a portion of its track in the opposite sense [y(s,) 
= - y(S2)] . However, a curve which touches itself or re­

traces part of its track in the same sense [y(s 1) = y(sz)] is 
excluded for the condition is not satisfied at the point (s) 
where the curve bifurcates. For such a curve, at the point of 
bifurcation, information of higher order [say r (s)] would be 
required to determine which branch to follow; consequently, 
the curve could not satisfy everywhere a differential equa­
tion of second order. Note that the condition excludes bifur­
cation for both increasing and decreasing values of the 
parameter. 

One may also consider curves y':l-JI(!Ro, M) and r 
:1 _ J 2(!Ro, M) given in terms of local coordinates by 

yl(S) = (yli(S),y:i(S» , 

For those special curves for which 

y:i(S) = yli(S) , 

rii(S) = fi(S) , 

/1 i(s) = Yii(S) , 

(3.2) 

(3.3) 

the y' and r are called the first and second lifts of the curves 
1T, 0y':IR _ M and 1T2 0r:IR ---+ M, respectively. If y = 1T, 
oy': and y = 1T2 or:, then one writes 

/(y) = yl, 

l(y) =r· (3.4) 

The relations (3.3) do not hold in general since the coordi­
nates Y; ,iz are defined as derivatives only at a point. 

Definition: A curve structure (CS) 'IJ, on M is a set of 
curves in M such that for every element ylEJ 1(!Ro ,M), there 
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exists exactly one maximal curve YE'IJ such that/(y) passes 
through y'. 

Definition: An acceleration field on M is a map 
A:JI(!Ro, M) _J2(Ro, M) such that 1Ti oA = id. 

Lemma: Every curve structure on M defines a unique 
acceleration field on M and conversely. 

Given a curve structure 'IJ and ylE J 1(!Ro,M), let YE'IJ 
be the unique curve such that /(y) passes through yl. Then 
define 

(3.5) 

wheresElis uniquely defined by/(y)(s) = yl. Because of the 
restriction on curves in M stated above,/(y) does not self­
intersect. 

Conversely, in a given coordinate system an accelera­
tion field A is given by 

A (yli,y:') = (A i(yli,y:'),A ~ (yli,y:'),A ~ (yli,ym 

= «yli,y:i,A ~ (yli,y:~) . (3.6) 

Then, the initial conditions y(O) = yli and y(O) = y:i and 
the differential equation 

y(s) = A ~ (y(s),y(s» (3.7) 

determine a unique curve y up to a translation in parameter 
space such that /(y) passes through ylE P(!Ro, M). 

Unless required for clarity, the superscript denoting the 
order of the jet and the coordinates of the base point will be 
suppressed. Let (U,x) p and (D,X) p be charts ofpEM. Set 
X = xox-' and X =xox-'. ThenXoX = id andXoX = id 
with suitable domain restrictions. The coordinates of a 2-jet 
with respect to these charts, (~ ,rS) and (Y't ,j/'z), are related 
by 

y; =Xiyf, 

y~ =X~Yi +XjkyjlY~' (3.8) 

where (Xi ,X ik )EGLZ(n) is the 2-jet of X atx(p). The coordi­
nates of a I-jet, (~ ) and Y't , are related by the first of equa­
tions (3.8). 

Definition: A geodesic acceleration field r: 
J I (IRa , M) --> J2(IRo , M) is an acceleration field for which, 
at eachpEM, there is a chart, say (D, X) P' such that 

rw,) = (Y't ,0) . (3.9) 

This definition is a modern formulation ofWeyl's definition 
of a symmetric linear connection. (See Ref. 14b, Sec. 15, p. 
114.) 

Theorem 1: An acceleration field is geodesic iff relative 
to any given chart (U,x) p 

r~(y{)= -rikyfr,k, (3.10) 

where the r Jk are functions only of pEM. 
If an acceleration field is geodesic, then relative to some 

chart (D,X) p' it is given by Eq. (3.9). Then relative to (U,x) p 

r(y;) = (X, ')(X)T(X -')(X)(y;) 

= (X)r(y;) = (X)(y;,O) 

( ;,x iX-I X- m j k) = YI 1m j k y, y, . (3.11 ) 

Thus (3.10) holds with r Jk = - X ~mX;X 7: which are func­
tions only ofpEM. Conversely, ifan acceleration field is giv-
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en by (3.10), then relative to (U,X)p 

r-i(-j)-( X-ir'XjXk+X-iXjXk)-P-q (312) 
2 YI - - , jk p q jk p q YI YI' . 

Consequently, there exist charts in which r ~ ('Pi) vanishes; 
namely, those for which 

Xjk = X;rjk . (3.13) 

Geodesic accelaration fields can all be obtained as cross 
sections of an AFB with PFB ,q2(M) . Consider the space of 
maps r: J I(Ro ,Kg) -+ J 2(Ro,~) such that 1T~ or = id and 

(3.14) 

where the r jk are just numbers. This function space is a 
manifold of dimension n2(n + 1)/2 with the global coordi­
nates r jk' The group G L 2(n) acts on this space according to 

[(a)r(a-I)]~k = (a;r'pq -aipq)aj-IPak-lq. (3.15) 

Note that this equation has nothing at all to do with the 
manifold M whereas (3.12) refers to a particular pEM and the 
rjk in (3.12) are functions ofp. 

Denoted the space of maps defined by (3.14) by GA. 
Then using the GL2(n) action on GA given by (3.15) con­
struct the AFB 

~ .s;ff(M) = (GA (M),1TGA ,M,GA,,q2(M». (3.16) 

Then every geodesic acceleration field on M is given by a 
cross section r:M -+ GA (M) ofGA (M). 

4. PATH STRUCTURES 

A path in M will be denoted by S. That a curve Y is a 
member of the equivalence class defining S will be denoted 
by YES, or S = [y]. The k-lift of a curve y:I -+ M is the curve 
l (y):I -+ J k (IRo, M) which defines a curve it (y): 

I -+Ok (M) by means of the right action Rk of P k onJk(lRo, 
M). The k-lift ofthe path S in Mis the path l (5 )= [j~, (y) ] 

in Ok (M). (Note that it is not appropriate to define l (5) to 
be the path [l (y)] since the set of parameter transforma­
tions allowed for [l (y)] is in general the subset of those for 
[y] such that l(P) is the identity of pk.) A general element of 
Ok (M) will be denoted by S k. General curves and paths in 
Ok (M) may be defined but will not be needed for the pur­
poses of this paper. 

Relative to a coordinate chart (U,x) p for pEM, yl 
EJ I (IRo,M p )and YE J 2(IRo,M p )are determined by the 
coordinates 

yl = (Xi(p),y:i) , 

Y = (Xi(p)'YI2i,yt) . (4.1) 

In terms of these coordinates, the right actions RI and R2 
defined by (2.10) are given by 

RI (yl,i6(P» = (x'(p),(D,u)y:i), 

R2 (Y,i6(P» = (xi(p),(D,u)yI2i,(D,u?yt + (D 2,u)yn , 
. (4.2) 

where D,u and D 2,u are the first and second derivatives of the 
parameter transformation at t = O. From (4.2), it is evident 
that the portion of OI(M) over U is covered by the n coordi­
nate charts defined by taking D,u = lIy:b for b = 1, ... ,n. 
Similarly, the portion ofD2(M) over Uis covered by the n 
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coordinate charts defined by taking D,u = lIyl2b and 

D2,u = - Y22bl(YI2b)3 (4.3) 

for b = l,oo.,n. In general, equations will only be written for 
the case b = n, a case which is particularly apt for discussing 
timelike paths when n = 4. In this case the parameter trans­
formed coordinates are given by 

S ii = yii/ylln , 

S~i = yNyl2n S~i = (yl2nyii - YI2iYin)/(YI2n)3 (4.4) 

and satisfy S :n = 1, sin = 1, S ~n = O. In terms oflocal co­
ordinates, elements SIED!(M) and S2ED;(M) are given by 

S 1= (xi(p), S :U) , 

(4.5) 

where a = l,oo.,n -1. For convenience, the superscript de­
noting the order of the element and the coordinates of pEM 
will in general be suppressed. 

Let y:I -+ M be a curve in M. Then the lifted curves in 
OI(M) and 02(M) are given by 

i1, (y)(s) = (xioy (s),s f(s» , 

j~2 (y)(s) = (xioy(s),s f(s),s ~(s» , 

where 

s f(s) = jP(s)/Y'(s) , 

s ~(s) = [Y'(s)ji"(s) - jP(s)ji"(s)]I [Y'(s) P . 
Writing Xi(S) = xioy(s) = 1(s) , one readily obtains 

dxu 

sf(s) = -, 
dxn 

d 2xa 

s~(s) = (dxn)2' 

(4.6) 

(4.7) 

(4.8) 

For the case n = 4, S f(s) and S ~(s) are the 3-velocity and 3-
acceleration, respectively. 

Definition: A path structure (PS), 9, on M is set of 
paths in M such that for every element S IEDI(M), there ex­
ists exactly one maximal path sE9 such that S I is on /(5). 

Definition: A directing field on M is a map E: 
DI(M) -+ D2(M) such that 1T~ 0E = id. 

In terms of local coordinates, a directing field E is given 
by 

E(xi(p), sf) 

= (E i(Xi(p),s f),Ef(xi(p),s f),E~(Xi(p),S f» 

= (xi(p),sf,E~(Xi(p),sf». (4.9) 

Lemma: Every PS on M defines a unique directing field 
on M and conversely. 

Given a PS, choose SIEDI(M) and let S = [y] be the 
unique path determined by Sl = (xi(p),sf) . Let i~ (y)(s) 

= (xioy(s),sf(s),s~(s» and let S~ be the value of S ~(s) atp. 
Then E is defined at S I by 

E~(xi(p),sn =s~. (4.10) 

Conversely, a directing field E determines a PS by 
means of the differential equation 

(4.11) 
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which by means of (4.8) may be reexpressed as 

d
2
x
a -a( ;dx

a) - - x (4.12) 
(dX")2 - - 2 , dx" . 

The coordinate transformation formulas (3.8) together 
with (4.4) yield the transformation formulas 

- - fJ - X~ +XpS 1 

sf = X" x"n' ,,+ r~ 1 

- XpS~ +X;"s'lsf + 2X~s'l +X~" 
S~ = (X: +X;S02 

XPS~ +X';.u!'1si + 2X;:"s'l +X:" €f. 

(X: +X;S02 
(4.13) 

Definition: A geodesic directing field n:DI(M) 
- D2(M) is a.directing field for which, at each pEM, there is 
a chart, say (fj oX) p' such that 

fi<€n = <€f,O). (4.14) 

Note that every geodesic directing field corresponds to a 
class of symmetric linear connections which are projectively 
equivalent. (See Ref. 12, Sec. 22, p. 56.) 

Theorem 2: A directing field is geodesic iff relative to 
any given chart (U,x) p 

n~(sf) = sf(n;us'lsf + 2n;:"s'l + n:,,) 
- (n;us'lsi + 2n~s'l + n~,,), (4.15) 

where the lI~k are functions only of peM and lIji = 0 [so 
that n~p and n~n can be eliminated from (4.15)]. 

Let n be a geodesic directing field satisfying (4.14). 
Then relative to the chart (U,x) p 

n(sf) = (X)(X)n(X)(X)(sf) 
= (X)fi(€n = (X)(€f,O). (4.16) 

Using the inverse of (4. 13), one obtains 

xa j;pj;u + 2X a j;p +xa 
na(Sa) = pu':> I':> 1 np~ I nn 

2 1 (X~ +X;SD2 

_ X;u€'1€i + 2X:p€'1 +X~n Sa. (4.17) 
(X: +X;S02 1 

Substitution for t i in terms of sf gives 

n~(sf) = - sf(X7jX~X ~s'lsi + 2X7jX~X ~s'l 
+ X7jX~X D + (XfjX~X ~s'lsi 
+ 2X0X~X ~s'l +XfjX~X D. (4.18) 

Since r~i = - XipqX rXr by (3.11), (4.18) is the same as 
(4.15) with the njk replaced by r~k' However, one can de­
fine r i =r Z; and 

where n;j = O. The terms in (4.18) involving r i cancel, giv­
ing (4.15). 

Conversely, suppose a directing field is given by (4.15). 
Then apply (4.13) (for simplicity chooseXp = 8 p) to 
obtain 
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fi2<€ f) = lI2( sf) +X;u5''1si + 2X~ps'l + X~n 
- si(n~(s f) +X;us'lsi 

(4.20) 

The right-hand side vanishes for the choice X ~k = n~k; so 
that, a coordinate chart exists in which (4.14) holds. 

Geodesic directing fields can all be obtained as cross 
sections of an AFB with PFB .?P(M). With apologies for the 
multiple use of the same symbols, consider the space of maps 
n:DI(JR~) - 1)2(R:;) such that1T~ on = idand with n 2(s 111) 
given by the expression (4.15) with the understanding that 
si denotes an element ofDI(R;;) [not ofDI(M p)] and that 
the n~k are just numbers (not functions ofpeM). This func­
tion space, denoted by GE, is a manifold of dimension 
n2(n + 1)/2 - 4 (since n;j = 0). Again, there are n coordi­
nate charts. Corresponding to the chart in which S ~ = 1 and 
S ~ = 0, one may choose to eliminate mb and mp ' An ele­
ment (a)EGL2(n) acts on GE according to 

n _ (o)n(o) -I . (4.21) 

The effect of this transformation of the n~ car.: be found by 
successive application of (4.13) with the (X ~, X ~k) replaced 
by (oj, a~k)' Thus one can construct the AFB 

f1 E(M) = (GE(M),1TG:=,M,GE,f£2(M» (4.22) 

and every geodesic directing field on M is given by a cross 
section n:M - GE(M) ofGE(M). 

Finally, it is clear from Theorem 2 that if n is a geodesic 
directing field, then n 2( sf) is a cubic polynomial in S fin 
every coordinate chart (U,x) p' The converse is also true. 

Theorem 3: If with respect to every coordinate chart 
(U,x) p' the corresponding function E 2( sf) which deter­
mines the directing field E is cubic, that is, if 

E2(s f) =A a +B;s'l + C;uS'lsi +D;UTS'lsis~ , 
(4.23) 

where the coefficients A, B, C, D are functions only ofpEM, 
then E is geodesic. 

Under a coordinate transformation, a directing field 
tranforms according to 

E= (X)E(X). 
In terms of the function E 2( S f). this law becomes 

X;E~(S f) +X;us'lsi + 2X~pS'l +X~n 
(X~ +X;SD2 

X;E~( s f) + X;us'\S i + 2X~ps'l + X~n 
(X~ +X;SD2 

(4.24) 

(4.25) 

whereEa( sf) is given by the second equationof(4.13). The 

expression for E 2( sf) is obtained by substituting (4.23) 
into (4.25) and by expressing 5 i in terms of € i using the 
inverse of the first ofEqs. (4.13). The result is not in general a 
polynomial unless the coefficients D ;UT have the form 

(4.26) 
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However, if this condition is satisfied, then (4.23) may be put 
into the form (4.15) by redefining the coefficients in the fol­
lowing way. Set 

B; = 2B; + 8;B, 

B = [lI(n + l)]B ~ , 

and 

Cp = [lI(n + l)]C~p' 
Then it is only necessary to make the identifications 

Dpu = n;u' C;u = - n;u' 

B; = - n~p' A a = - n~n , 
from which follow (recall n;j = 0) 

B = B ~ = - n~n = n~n , 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

5. SYMMETRIES OF CURVE AND PATH STRUCTURES 

For the examination of differentiable manifolds and for 
the discussion of the symmetries of geometric objects defined 
on them, there are three qualitatively different scales to con­
sider; namely, global, local, and micro. In each case, a sym­
metry is an invertible, active transformation of the manifold 
which preserves the geometric object when attention is re­
stricted to the appropriate scale. For a given scale, the set of 
transformations which preserve a given geometric object 
form a group or pseudogroup called its global, local, or mi­
crosymmetry group, respectively. Note that the use of the 
term "infinitesimal symmetry group" instead of "microsym­
metry group" would incorrectly suggest that the Lie algebra 
of some finite group was under consideration. The symmetry 
groups will be defined for the cases of curve and path struc­
tures and for the corresponding acceleration and directing 
fields, the geometric objects of central interest in this paper; 
however, similar definitions would apply to any geometric 
object. 10 

First, consider global symmetries of a CS C((; . Let 
J:M --+ M be a diffeomorphism. Then for every YEC((; , yl 
= JOy is a curve in M and C((; 1 = {y/IYEC((;} is aCSfor M. If 

C((; 1 = C((;, thenJis a symmetry of C((; and the set of all diffeo­
morphisms J:M --+ M such that C((; 1 = C((; is the global sym­
metry group of C((; . 

Moreover, if 9 isaPSonMands = [y] isapath,sE9, 
then S 1 = [foy] is a path onM and 9 1 = [s IIsE9 J is a 
PS for M. If 9 1 = 9, thenJis a symmetry of 9 and the set 
of all diffeomorphisms J such that 9 1 = 9, is the global 
symmetry group of 9. 

Because of the bijective correspondence between CS's 
and acceleration fields and between PS's and directing fields, 
the above definitions may be reformulated in terms of these 
fields. Let A:J I(Ro' M) --+ J 2(Ro, M) be the acceleration 
field corresponding to the CS C((;. Then the acceleration field 

1345 J. Math. Phys., Vol. 21, No.6, June 1980 

A 1 corresponding to the CS, C((; 1 is given by 

AI=/(f)OAo/(f)~I, (5.1) 

where / (f):J k(Ro' M) --+ J k(No, M) is the k-prolonga­
tion of J:M --+ M. The condition that the CS remain invar­
iant underJis 

AI =A. (5.2) 

If y:I --+ M is a curve on M and J.l is a parameter transforma­
tion, then since 

/(f)o j~(yo J.l) = /(foy)o j~(P), (5.3) 

This action of the / (f) can be factored by the projective 
transformations /(P) to define the action on Ok(M) 

/(f)o j~,(y) = jt(foy). (5.4) 

Consequently, if 8:01(M) --+ 02(M) is the directing field 
corresponding to the PS,9 then the directing field 8 1 cor­
responding to the PS 9 1 is given by 

8 1 = /(f)08o /(f) ~ 1 (5.5) 

and the condition for in variance of the PS, 9, becomes 

(5.6) 

If the global diffeomorphism is replaced by a local 
diffeomorphism J: U --+ Vin the above considerations and if 
the invariance conditions are applied to the restrictions of 
curves and paths to U and V, then one refers to the local 
diffeomorphismJ as a local symmetry and the set of such 
local symmetries forms a local symmetry pseudogroup. If, in 
addition, the local diffeomorphisms are required to leave 
some point p EM fixed, the terms p-Iocal symmetry and p­
local symmetry pseudogroup will be used. In this case, the 
in variance conditions are applied only to those curves and 
paths which pass through the point p . 

The set J k D (M p ,M p) of k-jets j~ (f) of diffeomor­
phisms J:M --+ M which leave pEM fixed form a finite di­
mensional Lie group GL~. The group product is k-jet com­
position. The group GL~ is isomorphic to the group 
GLk(n). For I < k, there is a natural projection from GL~ to 
GL'p which maps j~ (f) into i p (f). The group GL ~ acts on 
J k (Ro ,M p) according to 

j~(f)o j~(y) = j~(foy) . (5.7) 

Again, parameter transformations commute with the 
action (5.7) so that the group GL~ also acts on O~(M) ac­
cording to 

j~ (f)o j~, (y) = j~, (foy) . (5.8) 

[See (4.6) and (4.7).] 

As noted above, a diffemorphismJinduces transforma­
tions (5.1) and (5.5) of acceleration and directing fields, re­
spectively. IfJ(p) = p, then one may restrict these transfor­
mations to the point pEM to obtain 

A ~ = j~(f)OApOj~(f)~I, 

(5.9) 

8 ~ = j~ (f)08 p 0 j~ (f) ~ 1, 

called the microtransformations at p of the curve and path 
structures. 
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Definition: A microsymmetry of CS, 'if (or a PS, &') at a 
point pEM is an element of G L ~ which leaves the corre­
sponding acceleration field A (or directing field E) invariant 
at p . The set of such microsymmetries forms a group which 
is a Lie subgroup ofGL ~ called the microsymmetry group at 
p. 

The invariance conditions are 

A f - A :: f - :: (5.10) p- P' -p--p' 

Relative to a chart (U,x) p' the microtransformation 
j~ (f) is represented by 

'2 (01 0 -I) - (Ii Ii ) ix(p) X X - j' jk , (5.11 ) 

where Ij is thelacobian and Ijk is the Hessian atx(p). For 
(Y()EJI(Ro,Mp) , 

A f(y() = (f)A (I) -I(yi) 

= (f)A (f j liy{) = (f)(f j liy{,A ~ (f j liy{» 

= (y(,fjA 1(f j liy{) + Ijkll- Ij I ;;;Iky ~ yt). 
(5.12) 

Consequently, the transformation law is 

A fi(y') - liA j(1 -liyj) + Ii I -Ijl -Ikylym 
2 I - j 2 j I jk I m I I . 

(5.13) 

Replacement of y ( by Ij y{ gives for the invariance 
condition 

A ~(fjy{) = IjA~(Yi) + Ijky(yt· 

For an infinitesimal microtransformation 

(f) = (8j + EFj ,€Fjk), 

(5.14) 

(5.15) 

where € is infinitesimal; consequently, the infinitesimal ver­
sion of(5.14) is 

F~yj(alayt)A ~ (y() = FjA 1 (Yi) + Ijk y{ Ylk. (5.16) 

The corresponding formulas for directing fields are ob­
tained as follows. Choose one of the n coordinate charts for 
][}~ (M) and ][}~(M) corresponding to (U,x) p' say the nth. 
Then apply (5.9) in the form 

Ef(f) = (f)E. (5.17) 

Using (4.13), one obtains for S I E][}~ (M) 

E f(f)( Sa) = E f(/~ + IpS f) 
I Inn + I;n 

= (/~ + IpS f,Efa(/~ + IpS f)) 

I~ + I;n I~ + I;S\ 
(5.18) 

and 
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x (/~ + IpS f)) . 
I~ + I;S\ 

(5.19) 

Using the convention S ~ = 1, the result may be expressed 
more compactly as 

Efa(/~S'1 ) 
2 f7s'l 

l a :: f3( f;- a)/nf;- i In:: f3( f;- a)/af;- i f3- 2 !> Ii!> I - f3- 2 !> Ii!> I 

(f7S\)3 

l a f;-jf;-klnf;-i In f;-jf;-kl"f;-' + jk!> I!> I i!>1 - jk!>I!>1 i!>l. (5.20) 
(f7Si)3 

The invariance condition corresponding to (5.14) is obtained 
by replacing E f by E in (5.20). Finally, using (5.15), one 
obtains for the infinitesimal version of the in variance 
condition 

~:~( sf)[F :si + F! - S f(F;si + F~)] 
+ 2E~( S f)[F;S \ + F~ ] 

+E~(sf)[F/Jsf -Fp] 

= F';,aS fsf + 2F~pS f + F~n 
- sf [F~aS fsf + 2F~ps f + F~n]. (5.21) 

6. SYMMETRIES OF GEODESIC CURVE AND PATH 
STRUCTURES 

In this section, a number of theorems are stated and 
proved which serve to characterize geodesic curve and path 
structures geometrically in terms of their microsymmetry 
groups. 

Theorem 4: A curve structure ~ is geodesic if and only 
if its microsymmetry group for every pEM is a subgroup of 
GL~ isomorphic to GLI(n). 

Let A be the acceleration field corresponding to a geo­
desic CS, 'if. Then with respect to any chart (U,x) p 

A~(YI)= -rjky{ylk. (6.1) 

Substitution of (6.1) into the invariance condition (5.14) 
gives 

Ijk = I~r~k - r~m 1~/'l:. (6.2) 

Thus the microsymmetry group is the subgroup ofGL~ of 
elements of the form 

<Ii lirl r i 111m) (6.3) 
j' I jk - 1m j k • 

It is straightforward to verify that this subgroup ofGL~ is 
isomorphic to GLI(n). 

Conversely, assume that the microsymmetry group is 
isomorphic to GLI(n). An infinitesimal element ofGL ~ has 
the form (5.15). For any element in the microsymmetry 
group, theFjk are determined by theFj. The product oftwo 
such elements is 

Wj + €(Fj + Gij),€(a'Jk(F;) + ajk(G;». (6.4) 

Closure requires linearity 

(6.5) 
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and a~k(F;) vanish when F; vanish since the identity ele­
ment is (8~,Q) . Thus 

i (F') i sF' a jk S = a jk' s' (6.6) 

where the a~kr s depend only on the point peM. 
Now assume that A ~(rf) is at least C 4 and set 
iii i j i j k i i A 2 (rl)=A +Bjrl +Cjkrlrl +w(rl), (6.7) 

where A i,B ~, and C ~k depend only on peM and wier f) is of 
order (r f)3. Substitute (6.7) and (6.6) into (5.1) and note that 
the F~ are arbitrary. Set the coefficients of F~ equal to zero 
to obtain 

r'[B~ + 2Cjrr{ + w:r(r[)] 

= 8~ [A' + Bjrt + Cjk rfrlk + w(rf)] 

+ a~~rr{rlk. (6.8) 

Equating the coefficients of terms of corresponding order, 
one obtains 

8jB~ = - 8~Bj, 

ajtr = - 8~Cjk + 8jC~k + 8~C~r , 
r; w:r(ri) = 8~wS(r;) . (6.9) 

From the last equation of (6.9), w:r = 0 for i =1= r; so that, \;j i 
the ith component of w depends only on the ith component of 
r I . But then choosing r = i and S =1= i, w would have to be of 
first order in r; contrary to assumption; consequently, 
wier I ) = O. From the second equation of (6.9) by contracting 
on sand j 

B~ =8~(1/n)B~ =8~B. (6.10) 

The third equation of (6.9) shows that the a~:r have the form 
required in order that (81j + EF~,Ealj:rF;) is a microsym­
metry group element which is the infinitesimal version of 
(6.3) where 

I C i rl a jk = jk=- jk' (6.11) 

Using these results in (6.9), one obtains 

A ~(rf) = Bit - r~kr{rlk. (6.12) 

The CS defined by (6.12) is geodesic since the term contain­
ing B can be eliminated by a suitable choice of parameter. 

The fact that the microsymmetry group of a geodesic 
CS is isomorphic to GL I(n) is closely related to the existence 
of affine normal coordinatesll and the fact that such coordi­
nates are unique up to a GLI(n) transformation. 

The next theorem characterizes the maximal micro­
symmetry group of a geodesic path structure f!ll with corre­
sponding directing field E. 

Theorem 5: If a path structure f!ll is geodesic then its 
microsymmetry group for every peM is a subgroup of GL ~ 
isomorphic to the subgroup ofGL2(n) with elements of the 
form 

(6.13) 

The proof of this theorem is tedious but straightfor­
ward. Consider an arbitrary infinitesimal element (5.15) of 
GL~. To be an element of the microsymmetry group f!ll, the 
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parameters F~ and F~k must satisfy the invariance condi­
tion (5.21) for arbitrary sf where the E~( sf) are given by 
the expression (4.15) for ll~( sf) in terms of the llljk which 
are known and depend only onpEM. Carrying out the substi­
tutions, one obtains a polynomial in sf which must vanish 
for arbitrary sf. Equating the coefficients of this polynomial 
to zero yields the various components of the relation 

,. i I I,. Ii; i Fjk =F/ll jk -Fjnlk -Fklljl +8jFk +8k F j . 
(6.14) 

Consequently, the F~k are determined in terms of the pa­
rameters F~ and F, which may be chosen arbitrarily. To 
organize the computation for (6.14), it is useful to define 

Fi = [1/(n + l)]F:" 
(6.15) 

i~k = F'~k - (8i
j Fk + 8kF j ), 

so that it = O. After substituting for F 'jk in terms of i ~k 
and F" the terms containing F, drop out and the i~k are 
determined by the first part of (6.14) involving the n~k' It is 
also useful to recall that nt = O. 

The finite form of the microtransformation (5.15) with 
Fjk given by (6.14) is 

(f~,f;njk -llim Ij l'k + I~ I k + f'k I j). (6.16) 

It is a straightforward matter to verify that the subgroup of 
GL~ of such elements is isomorphic to the projective sub­
group of GL2(n) with elements given by (6.13). 

Corresponding to the normal coordinates of a space 
with a geodesic curve structure, there are for a space with a 
geodesic path structure special projective normal coordi­
nates12 determined up to a projective transformation. 

Consider the action of GU(n) on a fiat n-dimensional 
affine space. Straight lines through the origin are mapped 
into straight lines through the origin. Moreover, the dilata­
tion subgroup of GLI(n) of elements (eS8~) for SER (one 
might also include refiections) maps each straight line 
through the origin into itself. The following theorem states 
that if the paths of a path structure are straight to second 
order at every point pEM, then the path structure is geodesic. 

Theorem 6: If a PS, f!ll , admits at every pEM a micro­
symmetry j;(f)EGL; with j~(f) = (A8~) and A =1= I, then 
9 is geodesic and conversely. 

The converse follows from Theorem 5. Let fp(/) be a 
microsymmetry of f!ll and let the corresponding directing 
field be E. The invariance condition is given by (5.20) with 
E fa = E~ • Since Ij = A8j with A =1=0 and A =1= 1, 

E~(sf) = [1/(..1, 2 -A )1[ljd{S~ - sf Ijd{s~], 
(6.17) 

which is of the required form (4.15). 
The following theorem states that if a path structure f7' 

is microisotropic to first order, then it is geodesic. 
Theorem 7: If a PS, f7' , admits at every pEM a micro­

symmetry group G p(f7'), a subgroup ofGL~ , which in­
duces a transitive action on [)~(M), then f7' is geodesic and 
conversely. 

Again, the converse follows easily from Theorem 5. 
Suppose, then, that G/9) induces a transitive action on 
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D;(M). An arbitrary infinitesimal element ofGL~ is given 
by (5.15). For every such element that is an element of the 
microsymmetry group Gp (9). the directing field E of 9 
satisfies the constraints (5.21). Since. Gp (9) acts transitive­
lyon D;(M). an n-dimensional projective space. and since 
dilatations do not affect points of D; (M). the F~ in (5.21) 
may be chosen arbitrarily up to a dilatation. In particular. if 

Fj = xj + (l/n)8j X • 
(6.18) 

x~ =0. X=F;. 

Then the X~ .X~ and X'P may be chosen arbitrarily. Now. 
assume that E~( 51) is at least C 6 and expand in a Taylor 
series about 5 ~ = 0 • 

E~(51) =A (l + B~5 f + C~1T5 f5T +D~1Tu5 f5T5f 
+E~1T<TT5fST5f5r +Wa(51). (6.19) 

where it is assumed that wa
( 51) is of order five in the varia­

bles 5 ~(a = 1 ..... n - 1). Substitute (6.19) into (5.21) and 
pick out the terms of order at least four in 5 ~. Expressed in 
terms of the X~ .X~X'P. and X. the result. which does not 
depend on the Fjk' is 

Xt[w~/3( 51)] + X" [ - 5fsrw~y( 51) +25 Fwa( 51) 
+ 5;'w/3( 51) - 25 FE~1TuT5 fS T5f5 r + 5fE : 1TUT 

X5 fST5f5r + 5~D~1Tu5 fST5f - 5 FD~1Ta5 f5T5fl 
+ x:[ - 5 rw:'/3( 51) + 81fi5;'w;( 51) 
- 8,Jwl'( 51) - 81fiw"( 51) + 4n E~ 1Ta/35 fS T5f 

- 8[~E;'1T{TT5 fST5f5~ + 281fiE~1TaT5 f5T5f5r] 
+ (l/n)x[ -25rW~y(51) + E~1TaT5 fST5n~] = O. 

(6.20) 

Since X ;:.X'P. and X: may be chosen arbitrarily. for arbitrary 
parameters A {3 Jl {3. and v1fi which depend only on pEM. one 
obtains the relations 

w~(J( 51) = A /3 [ -25rw~l'( 51) + E~1TaT5 fST5f5n . 
(6.21) 

- 5 F5 \w:;,( 51) + 25 Fw"( 51) + 5~w/3( 51) 

- 25 FE';, mn5 fS T5f5 r + 5~ E :1T(TT5 fS T5f5 r 
+ E:-" D (J E:- f' E:- TT E:- <T _ E:- /3 D " E:- p E:- 1T E:- u 

~ 1 P TT(7~ 1 ~ t ~ I !:I I P rra!:l 1 ~ 1!:1 1 

The terms of order four of (6.22) give 

5~D~1Tu5 fST5f - 5 FD';,ff(T5 fST5f 
=1l{3E~Tr(TT5 fST5f5r . 

Thus 

aE{3 + {3Ea -0 Il P1T(TT Il PTr(TT - . 

(6.24) 

(6.25) 

Suppose 3a E~1T(TT=I=O. Then (6.25) for (J = a giveslla = 0 
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and then (6.25) for {J=!=a gives Il {3 = O. On the other hand. 
suppose 3a lla =l=O . Then (6.25) for {J = a gives E ~ Tr(TT = 0 
and (6.25) for (J=J=a gives E ~ 1T(TT = O. 

Consequently. the right side of (6.24) must vanish. and 
it follows that 

D~1T(T =1 [8~D1T(T +8~Dp(T +8~DpTr]' (6.26) 

Moreover. one must have V aE'~ Tr(TT = O. for if 38 
E~ 1T(TT #0 then Valla = 0 and the right side of (6.22) van­
ishes. The terms of order five of (6.22) then give for any a. {J 

- 25 FE~>1T'TT5 f5 T5'(5 r + 5~E: 1TaT5 fS T5f5 r = 0 
(6.27) 

and for a = (J = 8 this gives 

5~ E~ TraT5 f5 T5f5 r = 0 (6.28) 

whence E~, 1TaT = 0 which contradicts the assumption. Thus 

V"E';,1T(TT =0. 
Next (6.21) gives 

w~/3( 51) = - 2 A {3nw~,( 51)' 
Contraction with 5 F gives 

(1 + 25 FA (1 )n w~, ( 51 ) = 0 . 

Consequently. since w~/3( 51) is c I • 

nW:~(51)=0. W~{3(51)=0. 

Finally. (6.23) gives 

8'PWY(51) + 81fiWr1(51) = O. 

and by contraction of y and (J 

W
a (51) = O. 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

Since it has been shown that E~( 51) is a polynomial of de­
gree at most three, the proof may be completed by appealing 
to Theorem 3 above in Sec. 4. Alternatively. since (6.26) is 
just (4.26). the redefinition argument following (4.26) may 
be applied directly. 

7. DECIDABILITY OF THE CONSTRUCTIVE AXIOMS OF 
GRT 

Recent criticisms of the geodesic method of EPS were 
outlined in the Introduction. Before proving their invalidity. 
we shall briefly analyze their philosophical basis and con­
trast the latter with the conceptual motivation. significance. 
and aim of the constructive axiomatics of EPS. This will 
clarify to what extent the work ofEPS constitutes a solution 
to the controversy between realism and geometric conven­
tionalism in favor of realism. 

Einstein suggested the distinction between principle 
theories and constructive theories. l3 The aim of a construc­
tive theory is to reduce a wide class of diverse complex phys­
ical processes to simpler ones. Our understanding of the for­
mer is constructed out of hypotheses concerning the latter; 
for example. the kinetic theory of gases constructs mechani­
cal, thermal. and diffusional processes from the hypothesis 
of molecular motion. On the other hand. a principal theory 
postulates abstract structural constraints which events are 
held to satisfy. Einstein's example is the classical theory of 
thermodynamics. 

The special and general theories of relativity are princi-
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pIe theories of spacetime structure. The four dimensional 
pseudo-Riemannian manifold is the mathematical model of 
the physical spacetime of the theory of general relativity. It 
was Weyl who first distinguished between two more primi­
tive structures of the model: the conformal structure, and the 
projective structure of paths defined by the set of all unpara­
metrized geodesics. 14 

Weyl suggested that the conformal structure represents 
the causal structure and may be identified with the propaga­
tion of light, and that the projective structure represents the 
inertial structure of spacetime that is revealed by the path 
structure of free fall motions of suitable test particles. 

Using these structures and their compatibility relation, 
Ehlers, Pirani, and Schild l have derived a unique Rieman­
nian spacetime metric solely as a consequence of a set of 
"geometry free" axioms concerning the incidence and differ­
ential-topological properties of light propagation and free 
fall. 

The "geometry free" axioms are propositions about a 
few general qualitative assumptions concerning free fall mo­
tion and light propagation that can be verified directly 
through experience in a way that does not presuppose the 
full blown edifice of the theory of general relativity. From 
these axioms, the theoretical basis of the theory is recon­
structed step by step. Following Reichenbach, IS EPS call 
their approach constructive axiomatics. 

The aim of a constructive axiomatic approach to a prin­
ciple theory of space-time is to exhibit the physical basis for 
the particular structural constraints which the principle the­
ory postulates certain events must satisfy. The structures 
contained in themathematical model of a principle theory 
should all have in principle a link to physical experience. 
Spacetime models with inherent structures that do not relate 
to experience (e.g., absolute time) are defective for that rea­
son. 16 Hence, it must be theoretically possible, that is, possi­
ble in principle, to relate the various structures to experience 
in a way that is consistent with the theory. 

Hence a constructive axiomatic approach should satis­
fy the basic requirement orany proper and complete theory. 
Completeness requires that the reconstruction of the various 
structures inherent in the mathematical model of a principle 
theory of spacetime be realizable by means of relatively sim­
ple physical systems that are themselves well defined within 
the specific theory being considered, that is, that can be con­
sidered as an interpretation of the inherent structures of the 
spacetime model and are consistent with the theoretical con­
sequences of the theory which presupposes that model. Ein­
stein was well aware of this problem and considered the use 
of clocks and rigid rods an undesirable makeshift. 17 Unlike 
light propagation and freely falling particles, rigid rods and 
ideal clocks are relativistically ill defined and are thus un­
suitable for the determination of the inherent structures of 
the spacetime of general relativity. The concepts of a theory, 
its formulation and measuring devices should all lead to a 
unified, self-sufficient and conceptually coherent world pic­
ture. There are essentially two types of conventionalist view­
points. The less radical type may be called epistemological 
conventionalism. On this view, observationally indistin­
guishable theories may utilize alternative geometries, but it 
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is in principle not possible to single out that theory whose 
underlying geometry is the true geometry of the world. Any 
such decision, whether or not it is guided by criteria of sim­
plicity, is essentially epistemically conventional. Epistemo­
logical conventionality permits the existence of a true geom­
etry, but access to it is not possible in a nonconventional 
manner. 

Ontological conventionalism asserts that the continuous 
spacetime manifold is metrically amorphous. All nontopolo­
gical structures are extrinsic to spacetime and are stipulated 
by means of the behavior of material entities such as clocks, 
light rays, and geodesic particles; that is, the metric structure 
of spacetime is always relative to which class of material 
entities is chosen as the standard of measurement (which 
choice is arbitrary). According to this view; metrical rela­
tions within spacetime reduce to the relations of the chosen 
material standards of measurement; that is, the latter are 
ontologically constitutive of the former. 

We are now able to see what the criticisms leveled 
against EPS really amount to. The charge of epistemic circu­
larity is directed against the geodesic method because the 
latter employs the concept of free fall as a standard of inertial 
motion. The criticism is thus essentially about the status of 
the infinitesimal law of inertia. Since, as the argument goes, 
the inertial law does not by itselffurnish independent criteria 
by which one can decide when a test particle is free, it is 
considered to be conventional in character. But this reason­
ing rests on a serious misunderstanding of both the law of 
inertia and the geodesic method which employs it. 

First, the essential idea of the geodesic method is to 
discover through the behavior of physical systems various 
intrinsic, primitive geometrical spacetime structures. It is in 
spirit analogous to Helmholtz's procedure of deducing the 
existence and form of the metric of physical space. 18 Helm­
holtz asked "what must the geometric structure of space be 
in order that a mechanics of rigid bodies is realizable in that 
space?" Thus Helmholtz is essentially asking what abstract 
structural constrainst must a principle theory of mechanics 
postulate that certain events must satisfy. According to 
Helmholtz, the structure of space follows from the possibil­
ity of congruent transport of rigid bodies; that is, the struc­
ture of space constitutes a necessary condition for the possi­
bility of the realizability of certain physical processes and 
operations within that space; in particular, whether or not 
space possesses a constant curvature, or whether space is a 
general Riemannian space depends on whether or not phys­
ics allows the introduction of ideal rigid bodies. 

The structure of space is, according to Helmholtz, the 
framework for possible physical laws. Certain types of laws 
presuppose certain types of spaces. Hence, on this view, the 
law of inertia presupposes an affine structure and may thus 
be regarded as a geometrical statement. 

The conventionalist view that considers the behavior of 
material entities as being ontologically constitutive of the 
metrical structure of spacetime is clearly at variance with the 
notion of a principle theory. It is clear that the views ofWeyl 
and Helmholtz are directly opposed to those of ontological 
conventionalism. According to Weyl, " ... the behavior of 
rigid bodies and clocks is almost exclusively determined 
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through the metric structure, as is the pattern of the motion 
of a force free mass point and the propagation of a light 
source. And only through these effects on the concrete natu­
ral processes can we recognize this structure.,,19 Thus ac­
cording to Weyl we discover through the behavior of phys­
ical phenomena an already determined metrical structure of 
spacetime; that is, the metrical relations of physical objects 
are determined by the second rank physical metric tensor 
field which is only revealed by, not defined by, those rela­
tions. Although distinct from physical objects in space-time, 
the metric tensor explains the geometric relations between 
them. 

Secondly, Newton's first law and the corresponding in­
finitesimal version thereof, is physically realized by a suit­
able class of objects in free motion. These laws are geometri­
cal statements concerning the underlying spacetime 
structure. The inertial laws serve to define an affine structure 
on the spacetime manifold. It is the affine structure that 
plays the essential role in the formulation of all physical laws 
that are expressed in terms of differential equations. In both 
Newtonian physics and general relativity, all dynamical 
laws presuppose that structure. Now, inability to identify or 
single out a class of suitable test objects in an epistemologi­
cally noncircular way whose free motion exhibit the projec­
tive structure of spacetime means only that the truth of the 
axioms concerning free fall is epistemically undecidable. But 
any argument from the epistemic inaccessibility of free test 
particles-even if this inaccessibility has a sound logical and 
physical basis-does not establish that the structures de­
rived from the axioms are ontologically conventional. The 
most that is entailed is epistemological conventionality. 

However, epistemological conventionality permits the 
assertion of the truth of the axioms and hence the inference 
from them to a unique metric structure at least in this condi­
tional sense: 

If the geometry-free axioms are true of the world and 
are hence satisfied by an actual or possible nonempty 
class of suitable test objects (light rays and symmetric, 
nonrotating, neutral, freely falling particles), then there 
exists a unique and intrinsic spacetime metric. 

The truth of this conditional claim is incompatible with the 
truth of ontological conventionalism, for if the latter were 
true, then there could be no factual reasons, known or un­
known, for preferring one metric over another. But EPS 
have at least shown that certain facts, ifknown, would single 
out a unique intrinsic metric. That we may not perhaps avail 
ourselves of these facts in an epistemically noncircular way 
supports only epistemological conventionalism. 

We shall now show that one does have epistemic access 
to freely falling particles in a way that does not beset the 
geodesic method ofEPS with either logical or epistemologi­
cal circularity. First, note that freely falling particles are not 
required to construct the radar coordinate systems. For this 
purpose, any massive particles may be employed. Then, rela­
tive to such a coordinate system the trajectory ,of any other 
particle may be determined. 

If the motion of a particle is governed by a directing 
field E, then, by definition, such a particle's spacetime trajec-
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tory is determined uniquely by an event on the trajectory and 
its direction at that event. Assume that there are many parti­
cles governed by a given directing field E if there are any at 
all. Then collections of particles corresponding to various 
directing fields can be built up by means of the following 
comparison procedure. Two particles belong to the same di­
recting field class if and only if whenever they are launched 
from infinitesimally neighboring spacetime events with di­
rections which differ only infinitesimally, their subsequent 
spacetime trajectories remain infinitesimally near. Here, the 
notion of near does not require a metric. Only an appeal to 
the differentiable structure of the manifold is required. The 
fact that in practice such a differentiable topological concept 
of nearness would require limiting sequences of experi­
ments20 would only complicate the matching procedure. 
Note that requiring the directions to differ only infinitesi­
mally does not presuppose a connection since the infinites­
imal transformation has been left arbitrary. This matching 
procedure permits the separation of particles into classes, 
each class associated with a distinct directing field. The EPS 
axiom regarding the existence of freely falling particles as­
serts the existence of at least one such class. 

Particles with higher order gravitational multi pole mo­
ments can almost be eliminated from consideration at this 
point. One would expect that their spacetime trajectories 
would not be uniquely determined solely by an event on the 
trajectory and the direction at the event but would also de­
pend on the orientation of the multipole moment as is the 
case for particles with higher electromagnetic multipole mo­
ments. The motion of such particles would not be governed 
by a directing field and the above matching procedure would 
fail. The analyses of the motion of particles with gravitation­
al muItipole moments,21 both relativistic and nonrelativistic, 
indicate that the motion of such particles is indeed not gov­
erned by directing fields; however, it is not possible to rely on 
such analyses here because they presuppose a metric. Conse­
quently, the conceivable degenerate case in which only the 
scalar magnitude of such a particle's multipole moment in­
teracts with the gravitational field must be considered. 

For each class of particles, the corresponding directing 
field E could be measured at any given spacetime event as 
follows. Take a large number of the particles and launch 
them from many different directions in such a way that they 
all pass through an infinitesimal neighborhood of the given 
spacetime event. Track each of the particles in some radar 
coordinate system. Then by curve fitting and differentiation 
(4.8), the one and two directions (51 ,52) for each of the parti­
cles may be determined at the given event. These pairs in 
tum determine the directing field 

(7.1) 

at the event in the given coordinate system. By repeating the 
procedure for many spacetime events the directingfields for 
the given class of particles may be measured. 

Having measured the directing field with sufficient ac­
curacy at a large number of spactime points, the analytic 
criterion (4.15) of Theorem 2 may be used to determine 
whether or not it is geodesic. Assume a polynomial form for 
the functions E ~ in (7.1) of degree greater that three, say five 
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or six. Then use the measured data pairs (t 1 ,52) at the given 
spacetime event to determine the coefficients by, for exam­
ple, the method of least squares. Then if the coefficients of 
the terms of degree greater than three are essentially zero 
and if the third degree terms other than 5 f D pa 5 is f are also 
essentially zero, and if this turned out to be the case for every 
spacetime event considered, then one would conclude that 
the directing field was geodesic. If it turned out that E ~ were 
not cubic polynomials of the desired form even at a single 
spacetime event, then one would conclude that the directing 
field was not geodesic. This curve fitting technique also 
serves to determine the projective coefficients ll~k (ll;k = 0) 
as functions of the spacetime event. In turn, these coeffi­
cients uniquely determine a geodesic path structure. 

The determination and measurement of the conformal 
tensor density [§ ab and the conformal connection 
coefficients 

Kjk = ![§il([§ Ij.k + [§ Ik.j - [§ jk,l) (7.2) 

is adequately discussed elsewhere in the literature. Ehlers, 
Pirani, and Schild have shown that the necessary and suffi­
cient condition that a geodesic path structure determined by 
lljk is compatible with the conformal structure determined 
by [§ ab is that 1 

Ll)k ll}k - K}k = 5[§ jk [§ilql - 8~qk - 8~qj , (7.3) 

where the coefficients qj depend only on the spacetime event. 
The Eqs. (7.3) form a system ofn2(n + 1)/2 linear equations 
in the n unknowns qj. The structures are compatible if and 
only if a solution exists for every spacetime event. If (7.3) 
holds then the qj are given by 

_ 1 Gel GelpqA I 
qi - 180' i{ v 0'-1 pq (7.4) 

(for four dimensional spacetime); so that, the compatibility 
conditions that must be satisfied by the Ll }k may be obtained 
by substituting (7.4) into the right-hand side of(7.3). If the 
structures are compatible, the unique symmetric linear con­
nection which preserves nullity of vectors is given by 

r> =Kjk +5 [§i/([§ jkql - [§Ijqk - [§Ikq) 

= ll}k -4(8jqk + 8"qk)' (7.5) 

It is clear from this relation that it is possible to have any 
number of distinct projective structures all compatible with 
the same conformal structure. 

If extensive investigation failed to reveal even a single 
class of particles governed by a geodesic directing field, then 
the EPS construction would fail to demonstrate the exis­
tence of a unique Riemannian metric. Such a structure might 
still exist, but other means would have to be sought to estab­
lish evidence for its existence. 

If one or more classes of particles governed by geodesic 
directing fields were found and if none of the projective 
structures were compatible with the conformal structure, 
the construction would fail as before. If two or more projec­
tive structures were found which were compatible with the 
conformal structure, then not even a unique Weyl structure 
would exist let alone a unique Riemannian structure. There 
remains the case in which exactly one class of particles gov-
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emed by a geodesic directing field compatible with the con­
formal structure is found. Then the projective path structure 
revealed by these particles and the conformal structure re­
vealed by light propagation together determine a unique 
Weyl structure. As discussed by EPS, parallel transport 
along non-null curves is then well defined. Finally, the ab­
sence of the second clock effect is then the necessary and 
sufficient condition for the existence of a unique Riemannian 
metric. 

In conclusion, the truth of the constructive axioms of 
EPS is epistemically decidable in a noncircular manner, and 
the metric structure derived from the conformal and projec­
tive structures and their compatibility relation is therefore 
not even epistemologically conventional but constitutes an 
intrinsic feature of the spacetime manifold that is revealed 
through light propagation and free fall. 
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