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Notation and conventions

Conventions on general relativity

As with most general relativity textbooks, we will use the Einstein notation, where sum-
mation is implied for identical upper and lower indices. That is, for two quantities X
and Y , with components Xa1b1c2d1...p... and Ya2b2c2c2...p..., with a single common index p, we
have the equality

Xa1b1c2d1...p...Ya2b2c2c2...p... =
n∑
p=0

Xa1b1c2d1...p...Ya2b2c2c2...p... (0.1)

The sign conventions for general relativity are the following :

• The metric signature will be (+−−−).

• The Riemann tensor is defined as Rµν = Rσ
µσν .

• The Einstein equation is defined as Gµν = κTµν .

• The Levi-Civitta tensor’s sign is defined by ε123... = 1.

In terms of the Misner-Thorne-Wheeler notation, this corresponds to the (+ + +) con-
vention.
Pauli matrices :

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(0.2)

0.1 Units and dimensions

The mathematical calculations will all be in natural units, G = c = ~ = 1, while any
practical calculations will be in SI units.
Dimensions :
g : dimensionless Γ : L−1 R : L−2 L : J/m3
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1 Introduction

This book aims to provide a rather comprehensive set of theorems regarding spacetime,
general relativity and related gravitational theories.
Structure of the book :
Part I : definition and properties of spacetimes without any reference to general relativity
Part II : General relativity and its action on spacetime
Part III : Alternative classical theories of gravitation
Part IV : How matter behaves on spacetime, both as test fields and with backreaction.
Part V : Cauchy problem
Part VI : Quantum theory in GR
Part VII : Attempts at quantum theories of gravitation.
Part VIII : Specific examples of spacetimes
Part IX : History and experiments
As the title implies, this is a fairly large book. I would not recommend reading it in
its entirety, especially if you already have some familiarity with the topics involved, and
would recommend instead to use it more as a reference book.
While every structure is explained, some familiarity with general relativity and quantum
field theory is recommended.
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Part I

Spacetime
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This first part will be to define the structures of spacetime independently of general
relativity. A spacetime will be defined in full as the 4-tuple (M,A, g,∇), with M a
topological manifold, A a smooth structure on that manifold, g a metric tensor and ∇ a
connection.
For most spacetimes which are not too pathological, we will also define a time orientation
τ and a volume form ε, bringing it to a 6-tuple (M,A, g,∇, τ, ε). In almost all cases,
this notation will be shortened to (M, g), as the other structures usually either stem
naturally from them or are obvious enough.

Constructing examples

Throughout this book, a lot of theorems will be proven using examples and counterex-
amples of various spacetimes. A useful checklist in general for the construction of such
examples is Geroch’s [13] list of methods for constructing spacetimes

• Check the known solutions

• Tip the light-cones in some way

• Take a covering space or product

• Isolate what makes an example fail in a local region and push it off to infinity

• Introduce a conformal factor

• Patch spacetimes together across boundary surfaces

• Cut holes of various types

Those methods will work to construct most examples used in this book. While we will
investigate specific spacetimes and field theories in greater details later on, a few example
of the well-known solutions that will be used commonly are :

1.0.0.1 Minkowski space

The most basic example of flat spacetime, with its metric in Cartesian coordinates as

ds2 = −dt2 +
∑
i

dx2
i (1.1)

Common variations on Minkowski space will be Minkowski space with some identified co-
ordinates, usually either spacelike (where the spacelike hypersurface will be some cylinder
or torus) or timelike (also called the timelike cylinder, the standard example of a space-
time with causality violations).
The full details on Minkowski space can be found in chapter 71.

1.0.0.2 Misner space

Misner space is a standard example of a spacetime with closed timelike curves, as it is
simply Minkowski space identified by a boost.

ds2 = (1.2)
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1.0.0.3 Schwarzschild spacetime

The Schwarzschild spacetime is the solution for a spherically symmetric matter distribu-
tion.

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2(θ)dϕ2) (1.3)

1.0.0.4 (Anti) de Sitter space

1.0.0.5 The Einstein universe

Common matter fields

Another important list of example will be the common sources of matter used in the
Einstein field equations. These are either realistic fields or useful toy models.

1.0.0.6 Scalar field

The generic form of the scalar field is composed of a kinetic term, a mass term (of either
sign), a possible potential term and a coupling to curvature,

L = ∇µφ∇µφ+m2φ2 + ξRφ+ V (φ) (1.4)

This gives rise to the Klein-Gordon equation

�φ−m2φ− ξR− ∂V (φ)

∂φ
= 0 (1.5)

1.0.0.7 Electromagnetism

L = −1

4
F µνFµν − jµAµ (1.6)

This gives us the Maxwell equations

∇µF
µν = jν (1.7)

1.0.0.8 Dirac field

(eµaγ
a∂µ +m)ψ = 0 (1.8)
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2 The manifold

2.1 Charts and atlases

At its most basic level spacetime is defined, within the framework of general relativity, by
a manifold, based on the assumption that spacetime, while shown to be non-Euclidian,
still remains approximately Euclidian at a small enough scale, as can be determined by
local experiments. This is described mathematically by the concept of a chart.

Definition 2.1. A chart on a topological space S is a homeomorphism φ : U → O, from
an open set U of S to an open set O of Rn. The chart is Ck if the function φ is Ck.

U

Rn

M

O

φ

Figure 1: Chart on a manifold

Throughout this book, we will see that this fact, along with some Taylor expansions, will
allow us to show that measurable quantities will be locally Euclidian. That is, for a small
enough neighbourhood of a point, the deviation from the Euclidian quantity can be made
arbitrarily small.

A single chart will usually not be enough to cover an entire manifold, unless this manifold
is itself homeomorphic to a subset of Rn. We will require a collection of charts.

Definition 2.2. A Ck atlas is an indexed collection of Ck charts {Uα, φα}, α ∈ A, such
that

⋃
α∈A Uα = S, and if Uα ∩ Uβ 6= ∅, the transition map ταβ = φβ ◦ φ−1

α is Ck as well.

RnRn

M

Oα

Uα Uβ

φα φβ

Oβ

Figure 2: Transition map between two charts

19



2.1.1 Equivalence of manifolds

The atlas poses the problem that the same manifold could be covered by two different
atlases, even Rn. To remedy this, we will need some way of comparing manifolds with
different atlases. There are two ways to do this. The first one is to define an equivalence
relation

Definition 2.3. Two Ck atlases on the same set are Ck-equivalent if their union is also
a Ck-atlas.

For instance, if we consider the two atlases (Rn, φ1) and (Rn, φ2), those are equivalent if
φ1 ◦ φ−1

2 and φ2 ◦ φ−1
1 are both Ck on Rn.

The other method is to equip every manifold with a complete atlas.

Definition 2.4. A Ck atlas is complete if every possible Ck chart that intersects it with
a Ck transition function is included in it.

The equivalence between the two is simply that if we consider the equivalence class of
every Ck-equivalent atlas on a manifold, the complete atlas is the union of all those
atlases. A non-complete Ck atlas will then just be a representative of a complete atlas.
We will usually just refer to a representative of the atlas for simplicity.

Definition 2.5. A Ck manifold is a topological space associated with a Ck complete
atlas.

A C0 manifold is also called a topological manifold (so called because it only has a
topological structure and no differential structure). A C∞ manifold is also called a smooth
manifold.

2.1.2 Topology

One of the benefit of the charts on the manifold are that they define a topology on the
manifold.

Lemma 2.1. A subset U of M is open if for all charts, φα(Uα ∩ U) is open in Rn.

We may have more than one topology defined on our manifold, either because we defined
it from another structure or because we wish to add more to it. In this case, we can
compare this topology to the manifold topology.

Theorem 2.6. A topology τ on M coincides with the manifold topology if and only if
for all charts, Uα is open in τ and all maps φα are homeomorphisms with respect to τ .

Proof. If the two topologies coincide, any open set V of τ

Proposition 2.7. An atlas can be equivalently defined as homeomorphisms between
open subsets of M and open balls of Rn, or Rn itself. [cf Lee 2.13]

Proof. An open subset Oα of Rn can be described as the union of a set of open balls⋃
Bxi,ri . We can then consider the image

Uα,pi,ri = φ−1
α (Bxi,ri) (2.1)

with φ(pi) = xi. The restriction of the chart map to this subset φα,pi,ri will then form
along with this open subset a chart.
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This will allow us to have fairly well behaved atlases on a manifold. A particularly useful
type of atlas will be atlases of countably many simply connected sets.

Corrolary 2.1. A second-countable manifold admits a countable atlas mapping to simply
connected subsets of Rn.

If A is compact and C is closed A ∩ C is compact
proof : {Uα} an open cover of A ∩ C. Uα + M \ C covers A. Since A is compact,
A ⊂ (M \ C) ∪ Uα1 ∪ ... ∪ UαN so A ∩ C ⊂ Uα1 ∪ ... ∪ UαN

Proposition 2.8. If M is a Hausdorff manifold, then every compact subset A is closed.

Proof. p ∈M \A, for q ∈ A, there are disjoint open neighbourhoods p ∈ Up,q, q ∈ Uq. The
set of all Uq for q ∈ A are an open cover of A, hence there is a finite subcover Uq1 , ..., UqN .
The intersection Up,q1 ∩ ... ∩ Up,qN is an open subset of M disjoint from Uq1 ∪ ... ∪ UqN .
So every p ∈ M \ A has an open neighbourhood U ⊂ M \ A. The union of all those
neighbourhoods is open, hence the complement A is closed.

2.1.3 Coordinates

The map from a spacetime point to individual coordinates of a chart will just be the
composition of the map from the manifold to the coordinate patch and the projector πµ
from Rn to R, with µ ∈ N, 1 ≤ µ ≤ N , such that πµ(〈x1, ..., xµ, ..., xn〉) = xµ.

φµ = πµ ◦ φ (2.2)

The coordinate components xµ of a point p will then be

xµ(p) = φµ(p) (2.3)

usually just written xµ if no confusion arises. Be aware that in general relativity, indexes
generally go from 0 to N − 1, so that we will need to actually use φµ = πµ+1 ◦ φ.
The transition map defines a way to pass from one coordinate system to another. That
is, if we have p ∈ Uα, Uβ, then its coordinates in both charts will be xµ = φα(p) ∈ Oα
and yµ = φβ(p) ∈ Oβ, in which case we have

yµ = (φβ ◦ φ−1
α )(xµ) = ταβ(xµ) (2.4)

2.1.4 Dimensions

With this link between manifolds and Rn, we can define the dimensionality of a manifold
by referring to the dimensionality of the domain of its charts.

Definition 2.9. A manifold is said to have dimension n, noted dimM = n, if any of its
chart is to a subset of Rn.

Since homeomorphisms between subsets of Rn and Rm can only occur if n = m (outside of
the empty set), this means that a manifold of dimension n has all of its charts to subsets
of Rn. In other words, any manifold that isn’t the empty set will only have a single
dimension n. The empty set, which has the complete atlas {∅,∅} will be a manifold of
every dimension n.
In particular, this implies
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Proposition 2.10. A non-empty manifold M cannot be homeomorphic to a manifold
N unless dimM = dimN .

2.1.4.1 Manifolds of dimension 0

The set R0 is simply the singleton {b}. There is then obviously only one connected zero-
dimensional manifold (outside of the empty set), up to homeomorphism, defined by the
chart

(U, φ) = ({a}, 〈a, b〉) (2.5)

where the full atlas is the set of every possible b to map a to, and the homeomorphism
between any two such manifolds is f(a) = a′.

Any disconnected 0-manifold will then just be a set of such charts, classified only by their
cardinality.

2.1.4.2 Manifolds of dimension 1

Two simple examples of manifolds of dimension 1 are the line, which has the canonical
chart (R, IdR), and the circle, with the two charts ((−1, 1), φ1) and ((−1, 1), φ2), where
the intervals (−1, 0) overlap and so do the (0, 1) interval, with transition charts

τ12 =
{

0 (2.6)

Proposition 2.11. There are only two Hausdorff, second-countable, connected manifolds
of dimension one.

Proof.

Dimension 0 and 1 will be the only trivial cases for the classification of manifolds (although
if the manifold isn’t assumed paracompact, there are 4 1-dimensional manifolds, and if
it is not assumed Hausdorff, there is an uncountable number of them). More details on
the classification of manifolds of higher dimensions will be present later in the book.

2.1.5 Manifolds with boundaries

A generalization of manifolds that will be of some use is manifolds with boundaries

Definition 2.12. A manifold with boundaries is a manifold where the atlas maps subsets
of the manifold to Hn, the Euclidian half-space {(x1, . . .)|x1 ≥ 0}, rather than Rn.

Also related are manifolds with corners

Definition 2.13. A manifold with corners is a manifold where the atlas maps subsets
of the manifold to the positive section of Euclidian space {x ∈ Rn|xµ >= 0}, rather than
Rn.

Proposition 2.14. Any manifold is a manifold with boundaries, any manifold with
boundaries is a manifold with corners.
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Proof. A simple map from Rn to the half space R≥0 × R(n−1) is

(x1, x2, . . .) 7→ (exp(x1), x2, . . .) (2.7)

Then we can compose this homeomorphism with the atlas maps to obtain maps from
the manifold to subsets of R≥0 × R(n−1). The same argument applies to manifold with
corners and a similar map to Rn

≥0.

M Rn R≥0 × R(n−1) Rn
≥0

φ exp exp

Proposition 2.15. The boundary ∂M of a manifold with boundaries is an (n − 1)-
dimensional manifold without boundaries.

Proof. If p ∈ ∂M with U 3 p a neighbourhood homeomorphic to Hn, as ∂(f(A)) = f(∂A)
under any homeomorphism f , we have φ(∂M) ⊂ ∂Hn = Rn−1. If we restrict φ to ∂M , this
defines a subspace homeomorphism to Rn−1 and so an (n− 1)-dimensional manifold.

Collar neighbourhood theorem :

Theorem 2.16. For a smooth manifold M with compact boundary ∂M , there is a
neighbourhood of ∂M diffeomorphic to ∂M × [0, 1)

2.1.6 Homeomorphisms between manifolds

Manifolds are often referred to by the equivalence class that two manifolds are the same
if they are homeomorphic, that is,

Definition 2.17. Two manifolds M and N are homeomorphic if there exists a homeo-
morphism f : M → N between them. It is noted M ≈ N .

Since both the identity, the inverse of a homeomorphism and the composition of two
homeomorphism are homeomorphisms, it is easy to show that≈ is an equivalence relation.

2.1.7 Smooth manifolds and smooth structures

A manifold is called smooth if it is a Ck manifold for every k ∈ N, or in other words if it
is a C∞ manifold. In this case, an atlas is also referred to as a smooth structure.
Whitney atlas smoothing theorem :

Theorem 2.18. For a manifold (M,Ak) with a Ck atlas, k > 0, the maximal atlas
contains a C∞ atlas on the same underlying set.

Because of this, and due to the fact that C0 manifolds lack a lot of the important struc-
tures for general relativity (such as tangent vectors, as we will see), from now on all
manifolds will be considered smooth unless otherwise specified.
Smooth structures on manifolds are not necessarily unique. Consider the two atlases on
R (R, φ1) and (R, φ2), with chart maps
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φ1 : x 7→ x

φ2 : x 7→ x3

The union of those two charts do not form a smooth chart, as φ1 ◦ φ−1
2 = 3

√
x is not a

smooth function at 0. Hence the maximal charts formed by those two atlases will not be
equivalent.
However, it will be shown that as long as there exists a diffeomorphism between two
manifolds f : (M1,A1) → (M2,A2), the two manifolds will be physically equivalent.
From now on, unless otherwise specified, the equivalence of two manifolds M1 ≈M2 will
be taken to mean that there is a diffeomorphism relating the two.

Theorem 2.19. There are homeomorphic manifolds with smooth structures that are not
diffeomorphic.

The simplest example is that R4 is the only Rn that admits smooth structures that are
not equivalent up to diffeomorphism (it in fact admits infinitely many). Beyond the
obvious (R4, Id) smooth structure, there exists manifolds noted R4

Θ such that there is no
diffeomorphism f : R4 → R4

Θ.
The proof of this is rather long and involved
The smooth structures of manifolds will generally not be explicitly stated, but if a mani-
fold admits more than one smooth structure (such as R4 or some Sn), it is assumed that
the standard smooth structure is used, unless otherwise stated. For R4 this will be of
course the smooth structure that includes (R4, Id), while the standard smooth structure
of the sphere includes the stereographic charts (US, φS) and (UN , φN), with UN and US
the sphere with the north and south pole removed, respectively, with the charts defined
by

τSN(xµ) = (
xµ∑
µ(xµ)2

) (2.8)

2.2 Maps between manifolds

Definition 2.20. A mapping between two manifolds M and N is a function f : M → N .
It is a continuous (resp. Ck, smooth) mapping at p if for every pair of charts of M and
N , φM,α : Uα → Oα and φN,β : Uβ → Oβ, such that p ∈ Uα and f(p) ∈ Uβ, the function
φN,β ◦ f ◦ φ−1

M,α is continuous (resp. Ck, smooth) at p. That property holds for the whole
manifold if it is true for all p ∈M .

Map f : M → N is smooth if for every charts in M and N, φN ◦ f ◦ φM is smooth in the
usual Euclidian sense
The set of all Ck mappings will be noted as Ck(M,N), and the set of smooth mappings
as C∞(M,N).
We’ll call the set of maps from M to the manifold R functions on M . If they are smooth,
they’ll be noted as C∞(M) rather than C∞(M,R).

Proposition 2.21. If a map f is smooth in a given atlas (Uα, φα), it is smooth.

Proof. For f to be smooth it must be smooth for every chart (U, φ). For any p ∈ U , there
is a chart (Uα, φα) such that p ∈ Uα. As it is part of the smooth structure, φα ◦ φ−1 is
smooth, and then so is f ◦ φ−1 = (f ◦ φ−1

α ) ◦ (φα ◦ φ−1).
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2.2.1 Diffeomorphisms

An important class of mappings between manifolds will be diffeomorphisms, which are
defined in the usual way.

Definition 2.22. A smooth mapping f with an inverse f−1 that is also smooth is called
a diffeomorphism.

The set of all diffeomorphisms from a manifold M to N will be noted Diff(M,N). As
we saw earlier, two manifolds are considered equivalent if there exists a diffeomorphism
between them. That is, for f ∈ Diff(M,N), f(M) ≈ N . Which means that we can
consider the set of diffeomorphisms on a manifold to be set of automorphisms on it.

Diff(M,N) = Aut(M) = Aut(N) (2.9)

Since M ≈ N , we can just simplify the notation as Diff(M). Given that the identity is a
diffeomorphism, as well as the inverse and composition of diffeomorphisms, the set of all
diffeomorphism has a group structure. We will see later on the details of this group.
In the same way as for the transition between two atlases, the transition between the
coordinates of two manifolds related by a diffeomorphism will be

yµ = (φβ ◦ f ◦ φ−1
α )(xµ) (2.10)

This will be the most general form of coordinate transformations that we will consider.
For brevity, we will usually denote it as

(φβ ◦ f ◦ φ−1
α )(xµ) = yµ(xµ) (2.11)

A quantity we will commonly use throughout this book is the Jacobian of a coordinate
change, defined by

Jµν =
∂

∂xµ
(φβ ◦ f ◦ φ−1

α )(xν) (2.12)

or, in a more evocative form,

Jµν =
∂yµ

∂xν
(2.13)

2.2.2 The pullback

The pullback is the composition of two maps between manifolds to form a third map,
that is, if we consider the maps

f : M → N, g : N → P (2.14)

the pullback of f by g, f ∗g is the function

f ∗g : M → P (2.15)

p 7→ f ◦ g(p) (2.16)

in other words, the function f ”pulls back” g from a function over N to a function over
M .
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2.2.3 Inclusion maps

Inclusion maps are maps between a manifold and a subset of itself.

Definition 2.23. A map ι : S ↪→ M from a subset S ⊂ M to M is an inclusion map if
it is injective and its restriction on ι(S) is the identity on M

In other words, the inclusion map associates to points of a subset their equivalent point
in the orignal manifold.
Subspace topology

2.3 Constructing manifolds

While it is not possible to find all possible manifolds for a dimension n > 3, there are
many methods to construct quite a wide variety of manifolds for the study of spacetimes.
We will show here a few methods to construct manifolds that will be useful for our study
of spacetimes.
The first obvious example of a manifold is Rn, using the chart (Rn, Id). One can also
check that any covering of Rn by open sets will form a proper smooth chart, as any
intersection will also be the identity on that open set.
By the same logic, any open subset O of Rn will also form a manifold, with the atlas
(O, Id). As the empty set is itself always a subset of Rn, it is a manifold, for every possible
dimension. The n-ball (such as the disk for R2) and the n-cube (0, 1)n are the simplest
example of such manifolds.
Similarly, any open set U of a manifold is itself a manifold, as if we consider the pre-images
φ−1
α (U) on each coordinate chart, each will form an open set that we can use as a new

chart by considering the restriction of the transition maps to that set, (φ|φ−1
α (U), φ

−1
α (U)).

As the complement of any closed set is an open set, removing a closed set from a manifold
will also produce a manifold, and in particular, the removal of a point.

2.3.1 Abstract manifold

It is possible to define manifolds completely independently from any interpretation as
another mathematical structure, simply by defining the transition maps ταβ. If we have
an index set I, with a subset Oα ⊂ Rn for every α ∈ I

2.3.2 Products of manifolds

Theorem 2.24. If M and N are manifolds of dimension m and n, there is a manifold
M ×N of dimension n+m.

Proof. The charts
φM × φN : UM × UN → OM ×ON (2.17)

maps points of the resulting manifold to open sets (with the product topology) of Rn+m.

A manifold M = Nk will correspond to the k-fold product manifold N ×N × . . .×N , of
dimension k dimN .

Example 2.25. A few important product manifolds are the cylinder R×S and the torus
T n = Sn.
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2.3.3 Lie groups

All Lie groups are manifolds by their very definition (cf. Appendix)
Lie’s third theorem :

Theorem 2.26. Every finite-dimensional Lie algebra g over R can be associated with
some simply connected Lie group G.

2.3.4 Submanifolds

Definition 2.27. A subset

2.3.5 Quotient manifolds

Quotient manifolds can be defined by the folding of manifolds.

Definition 2.28. For an equivalence relation ∼ between points of a manifold M , the
quotient space M/ ∼ is defined to be the space of equivalence classes [p] = {q ∈M |p ∼ q},
with the topology

Unfortunately, this definition does not necessarily give us a manifold, for instance if we
consider the equivalence relation ∼ on R2 where (x, y) ∼ (x′, y′) if both points are in
the same quadrant and x = y′ or x′ = y. This corresponds to an X shape that is not
homeomorphic to R around 0.

Theorem 2.29. For a connected manifold M and a discrete group Γ that acts smoothly,
freely and properly on M , then the quotient space M/Γ is itself a manifold.

Free group action : if g(p) = g(q) then p = q proper group action : inverse images of
compact subsets are compact.
Example : Rn/Zn,

2.3.6 Cut and pasting

It is possible to ”glue” different portions of a manifold together by identifying them.
There are two methods to do this : gluing along boundaries, or gluing along open sets.
The generic definition of gluing a single set is the quotient again : if we have two subsets
U1, U2 of a set A, with some homeomorphism f : U1 → U2,

Definition 2.30. The gluing of two sets A and B is defined by A ∪f B = A t B/ ∼,
where x ∼ f(x).

Proposition 2.31. The gluing of two manifolds M1,M2 along their boundaries is a
manifold.

Proof. Consider the disjoint union M1 t M2 and the quotient M = M1 ∪f M2 with
the identification map π : M1 tM2 → M . If we consider the collar of each boundary
ei : ∂Mi × [0, 1)→Mi, we can define a map

e : ∂M1 × (−1, 1) → M

(p, t) 7→ e(q, t) =

{
π(e1(p, t)) t ≥ 0

π(e2(h(p), t)) t ≤ 0
(2.18)
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As M identifies the boundary points p ∼ f(p), the function does indeed give one unique
answer for t = 0. ∂M1 × (−1, 1) defines a manifold, and from this we can define an atlas
over M , by combining the coordinate charts φM1 ◦ π, φM2 ◦ π and φ∂M1×D1 ◦ e [DO THE
DETAILS ON THE HOMEOMORPHISMS]

Proposition 2.32. The gluing M1 ∪f M2 is unique up to diffeomorphism if ∂M1 is
compact.

Proof. The only non-unique part of the construction is the collar ei of the boundary.
As every collar neighbourhood around a boundary is diffeomorphic, it follows that every
identical gluing will be diffeomorphic.

Lemma 2.2. Gluing lemma : For two smooth manifolds M1, M2 with boundaries and
a diffeomorphism f : ∂M1 → ∂M2, consider the gluing of those two manifolds M =
M1 ∪f M2 and two smooth collars hi : ∂Mi × R+ ↪→Mi. Then :

1. There is a unique smooth structure A(h1, h2) on M such that

2.3.7 Connected sums

The connected sum of two manifolds corresponds to the gluing of two manifold along the
boundary of a hole cut out of both.

Definition 2.33. Given two manifolds of the same dimension M and N , their connected
sum M#N is constructed by removing n-balls BM and BN from each of them and iden-
tifying the boundary ∂BM with ∂BN via some homeomorphism.

As the n-sphere minus an n-ball is itself an n-ball, the connected sum of a manifold with
a sphere is homeomorphic to the manifold itself.
The connected sum of a manifold and a torus is referred to as the addition of a handle.
The connected sum with a non-orientable equivalent of the torus such as the Klein bottle
or projective plane us referred to as the addition of an Alice handle.

Proposition 2.34. The connected sum of a manifold M and Rn is homeomorphic to
M \ {p}.

Proof.

A few examples of connected sums :

• plane with a handle R2#T 2 (homeomorphic to the punctured torus)

• The surface of genus 2 T 2#T 2

2.3.8 Exotic manifolds

Some manifolds can be fairly pathological, at least within the context of spacetimes, and
are not easily constructed from basic manifold examples.
The long ray L+ : first uncountable ordinal ω1, ω1× [0, 1), lexicographic topology, remove
the smallest point
Long line L: Long ray L+, define L− as the long ray with the order relation reversed,
glue at 0
Manifolds may also fail to obey the Hausdorff property. More details on this and many
examples in section 25.4.
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2.4 Topological properties

One important way to classify manifolds is by looking at their general topological proper-
ties, as many of them are preserved by diffeomorphisms, meaning that they characterize
the manifold itself.

2.4.1 General topological properties

Some generic properties of topological spaces that can help the classification of manifolds

2.4.1.1 Second countability

All manifolds are first-countable (every p ∈M has a countable number of neighbourhoods
{Ni} of p such that for any neighbourhood N 3 p, there exists an i ∈ N such that
Ni ⊂ N), as this property is inherited directly from Rn. In addition, we say that a
manifold is second-countable if it admits a countable basis, that is

Definition 2.35. A manifold is second-countable if there exists a countable set of open
sets {Bi} (the basis) such that every open set U is the union of a subset of the basis.

Rn for instance has the countable basis {Bq,r} of open balls situated at the points q = (qi),
qi ∈ Q and with rational radiuses. The long line is an example of a manifold that isn’t
second-countable.
Compactness
Connectedness
Hausdorff property
Paracompactness
Metrizability

2.4.2 Homotopy groups

Homotopy is a continuous deformation

Definition 2.36. A homotopy is a continuous map from the manifold to itself with
respect to some parameter t

h : M × I → M

(p, t) 7→ ht(p) (2.19)

We will be interested in the behaviour of k-spheres submanifolds of M under homotopy.

Definition 2.37. The homotopy group of a manifold

For the manifold M , πk(M) is the set of homotopy classes of maps f : Sk →M
π0(M) : Number of connected components π1(M) : Fundamental group, homotopy classes
of loops (ie 1-spheres). π2(M) :

Example 2.38. Euclidian space Rn has for all defined homotopy groups πk(Rn) = I

Proof. Since it is a vector space, the map ht(p) = (1− t) · p is continuous and maps every
point of the manifold to 0, hence all spheres are homotopically equivalent.
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2.4.3 Betti numbers

2.4.4 The Euler characteristic

The Euler characteristic χ is a quantity defined for compact manifolds by the alternating
sum of their Betti numbers, if they form a converging sum.

χ =
n∑
i=0

(−1)nbi (2.20)

Properties :

χ(M tN) = χ(M) + χ(N) (2.21)

χ(M ∪N) = χ(M) + χ(N)− χ(M ∩N) (2.22)

χ(M#N) = χ(M) + χ(N)− χ(Sn) (2.23)

χ(M ×N) = χ(M)χ(N) (2.24)

For a k-sheeted covering space M̄ →M

χ(M̄) = kχ(M) (2.25)

Fiber bundle πE →M :
χ(E) = χ(M)χ(F ) (2.26)

2.5 Orientation

Definition 2.39. A manifold M is orientable if for each pair of charts φα, φβ in an atlas,

the Jacobian determinant J(φα, φβ) = det(∂x
µ
α

∂xνβ
) is positive.

Any manifold covered by a single chart (such as Rn) is orientable, since the Jacobian of
a single chart will just be J(φ, φ) = det(δµν ) = 1.
Example of a non-orientable manifold : Moebius strip, defined by the charts (I, φ1),
(I, φ2), with I = (−1, 1) × (0, 1). The overlap of the two charts are over (0, 1) × (0, 1)
and (−1, 0)× (0, 1), and vice versa. The transition functions are

τ12(x1, x2) =

{
(x1 − 1, x2) x1 ∈ (0, 1)

(x1 − 1, 1− x2) x1 ∈ (−1, 0)
(2.27)

This has the Jacobian

∂τ12

∂x1

= (1, 0) (2.28)

∂τ12

∂x2

= (0, sgn(x1)) (2.29)

With determinant sgn(x1), which is not positive on the whole overlap, and hence isn’t
orientable.

Definition 2.40. A map f : M → N is said to be orientation preserving if
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2.6 Spacetime manifold

For our study of general relativity, we will have to restrict somewhat the class of manifolds
to consider if we want them to admit all the necessary structures. We will say that M is
a spacetime manifold, noted M, if it is at least of dimension 2 (and to simplify matters,
of finite dimension), connected, second countable, paracompact, and Hausdorff. It also
specifically excludes the empty set, which vacuously fulfills those conditions.

The various requirements of the manifold are explained as follow :

Connected

While the spacetime manifold may not be connected, any disconnected component will
have no influence on the physics of the component we inhabit. A rough argument for this
is that if a manifold is path-connected, it is also connected. Since we can approximate
a physical object as a continuous (timelike) curve, we will only be able to probe the
path-connected part of this manifold. Due to this, it is generally not of great interest to
consider any disconnected manifolds for a spacetime, at least classically.

Theorem 2.41. Connected components of manifolds are path-connected.

Proof. Assume M is a connected manifold. It is enough to show that a single p ∈ M
can be connected to all of M by paths. To do this, we will show that C = {q ∈ M :
there is a path from p to q} is open. It will then be closed, because its complement is a
union of sets of the same form. Let q ∈ C, and γ a path between p and q. Around q we
may find a coordinate ball, a chart domain that is homeomorphic to the unit ball in Rn.
This is path connected since it is convex. By concatenating with a path in this ball, we
can reach any point in it from p. Thus C is a union of open sets, hence open.

Hausdorff

The Hausdorff condition is there both to allow analysis to be performed properly (it
guarantees the uniqueness of limits). It will also along with paracompactness allow for
the definition of a partition of unity, as will be seen later, allowing for the definition of a
metric.

While spacetime is usually considered to be Hausdorff, there has been a few attempts at
working with spacetimes that do not obey the Hausdorff property, called Y-manifolds or
branching spacetimes. The analysis of such spacetimes is more complex since they do not
admit bump functions for every open set, a partition of unity and their vector fields are
not equivalent to derivations. Some details on this, as well as theorems on the matter,
can be found in section 25.4.

Paracompact

As manifolds that are not paracompact do not admit a metric, a partition of unity, and
generally have odd behaviours regarding their real-valued functions and vector fields, they
are not considered viable manifolds as models of spacetime.

In particular,

Theorem 2.42. A second-countable Hausdorff manifold is paracompact.
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Proof. Construction of a sequence {Gi}i∈N such that it forms a cover of the manifold, Ḡi

is compact and Ḡi ⊂ Gi+1

As the manifold is second-countable, it topology has a countable basis {Ui}

2.7 Real-valued functions

Real-valued functions (generally just called functions) on a manifold are just mappings
from the original manifold to the manifold R, with the same definitions we have used
previously. In other words, it is a map

f :M → R (2.30)

p 7→ f(p) (2.31)

Rather than denote it by C∞(M,R), we will just use C∞(M). The smoothness of a
real-valued function is then defined similarly as a map between manifold

Definition 2.43. A real-valued function is smooth if for every chart (U, φU), we have
that f ◦ φ−1

U is smooth in the usual sense of the term for functions between Rm and Rn.

It will be quite often useful to also define functions on manifolds as being functions on
their coordinates, in which case, for a chart neighbourhood U with map φU , the function
becomes

f ◦ φ−1
U : U → R (2.32)

xµ 7→ f(φ−1
U (xµ)) (2.33)

We will usually simply note it f(xµ) if no confusion arise. This form has the benefit
of offering a simple definition of the derivative of a function, by simply using the usual
definition of the derivative on Rn. Hence, the derivative of a function f with respect to
the coordinate xµ on the coordinate patch U will be

∂µ(f ◦ φ−1
U ) = lim

h→0

(f ◦ φ−1
U )(xµ + h)− (f ◦ φ−1

U )(xµ)

h
(2.34)

Real-valued functions form a ring on M , and in particular, every class of Ck functions
(including C∞ functions) form a subring of this ring.

2.7.1 Bump functions

A bump function is a function on a manifold that vanishes outside of a compact region,
which is useful to generalizes local theorems to global ones. Definitions of bump functions
may vary a bit, but we will use the most common one for working with manifolds :

Definition 2.44. A bump function at p is a smooth function of compact support, that
is, for a given compact set supp(f), all points q /∈ supp(f) are such that f(q) = 0, such
that there exists a neighbourhood U of p where f(U) = 1.
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We can construct a bump function on Rn [38], starting with the function on R

f(x) =

{
exp(− 1

x
) x < 1

0 x ≥ 1
(2.35)

This function is non-negative, smooth and positive for x > 0. Then we define

g(x) =
f(x)

f(x) + f(1− x)
(2.36)

which is non-negative, smooth and has value 1 for x ≥ 1, and 0 for t ≤ 0. We then obtain
a bump function by mirroring it

h(x) = g(2 + x)g(2− x) (2.37)

The bump function Π(xµ) on Rn will then simply be a product of those functions.

Π(xµ) = h(x1)h(x2) . . . h(xn) (2.38)

More generally, we can define a bump function at any point yµ with compact support on
the ball By,R by translating and rescaling this function.

Πy,R(xµ) = Π(
2‖x− y‖

R
) (2.39)

This can be generalized to arbitrary (Hausdorff) manifolds by the following theorem

Theorem 2.45. For a Hausdorff differential manifold, for every point p and every open
set U 3 p, there’s a bump function f with support supp(f) ⊂ U that is equal to 1 in an
open neighbourhood V of p, V ⊂ U .

Proof. For an atlas {(Uα, φα)} on the manifold, with an index β ∈ I such that q ∈ Uβ,
consider the neighbourhood O′ = φα(U ∩ Uβ), with the coordinates y = φβ(p). For
R, ε > 0, consider the open ball By,R+ε of center y and radius R+ ε in O′. This is always
possible for a small enough radius since O′ is open. We will also need the open balls
By,R/2, By,R and the closed ball B̄y,R. By Heine-Borel, B̄y,R is compact.
We then have in M the sets

V = φ−1
β (By,R/2)

W = φ−1
β (By,R)

K = φ−1
β (B̄y,R) = W̄

The bump function will then be defined by

f(p) =

{
Πy,R(φβ(p)) p ∈ Uβ
0 p /∈ Uβ

(2.40)

Then we have that f = 1 in V , which is an open set of M . By the Hausdorff condition,
if K is closed in Uβ, it is also closed in M , so that supp f = K ⊂ Uβ. W is open in Uβ,
hence W ∩ Uα is open for any α.
[blablabla]
Hence f(p) is smooth on M .
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2.8 Partition of unity

One important tool for the study of manifolds, to help make local structures into global
ones, is the partition of unity.

Definition 2.46. A partition of unity on a manifold M is a set of smooth functions
{fα|α ∈ A}, fα :M→ [0, 1] such that

• for every point p, there is a neighbourhood of p that intersects only a finite number
of supp(fα)

•
∑

α fα(p) = 1

A particular example of a partition of unity is if we have a cover {Uα}. If the partition
of unity {fα} is such that supp fα ⊂ Uα, we say that the partition of unity is subordinate
to this cover.

Theorem 2.47. For a Hausdorff, second-countable manifold, every open cover has a
countable partition of unity subordinate to it.

Proof.

2.9 Curves

Definition 2.48. A curve on a manifold is a function γ(λ) mapping a connected subset
S of R to the manifold.

γ : S →M (2.41)

The coordinates of a curve on a chart will sometimes be written as xµ(λ) = φµ ◦ γ(λ)

Definition 2.49. A point p ∈M is a terminal accumulation point of λ if for every open
neighbourhood U of p, and for every λ0 ∈ S, there exists a λ ∈ S, λ > 0 such that

Definition 2.50. p is an endpoint of a curve γ if for every neighbourhood U of p there
exists a λ0 ∈ S such that for all λ > λ0, γ(λ) ∈ U .

While every endpoint is an accumulation point, the converse isn’t true. For instance,
take in R2 the curve

y(λ) = sin(λ−1)

x(λ) = λ

0 is an accumulation point since for the open set Br, for λ0 < r and λ0 = [2nπ]−1,
γ(λ0) ∈ Br, but if r < 1, this is not true for λ0 < r and λ0 = [(2n + 1)π]−1. The curve
leaves and re-enters any neighbourhoods of 0 no matter how close.
In general, we will only consider curves for which the terminal accumulation points are
endpoints.
A curve γ is called endless if it has no endpoints.
A curve γ is inextendible if there’s no curve that contains it as a proper subset.

Proposition 2.51. Inextendible curves have no endpoints.

Proof. If a curve has an endpoint p ∈M , we can find a neighbourhood U of p. In a small
enough neighbourhood, we can extend the
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Figure 3: sin(x−1) with no endpoint

2.9.1 Reparametrization

For a curve γ and a smooth function h : S ′ → S between two connected subsets of R, we
say that γ′ = γ ◦ h is a reparametrization of the curve γ.

Proposition 2.52. A continuous curve that contains two endpoints is compact and can
be covered by a finite number of neighbourhoods.

Proof. By the definition of an endpoint, if a curve contains two endpoints, its range has
an upper and lower bound, making it a closed subset of R, which is compact. Continuous
map of a compact set gives a compact set every point p of that curve admits some open
neighbourhood Up, with Uγ,p = Up∩γ being a cover of the curve itself. Since it is compact,
it admits a finite subcover {Un} such that Un = Uγ,p for some p, hence we have a finite
set of neighbourhoods Up covering the curve.

Since a loop is an image of S1, which is also compact, the same applies.
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3 Vectors and vector fields

As manifolds will not generally be vector spaces, unless they are diffeomorphic to Rn,
we need another definition for the notion of a vector field. This can be done in a few
different ways by analogy with vectors on Rn.

3.1 Vectors as tangents of curves

The basic notion of vectors in manifold is via the notion of tangent of a curve. If we
consider a curve γ, with some coordinate expression xµ(λ) in some coordinate basis
(U, φ), then this curve is a function

xµ : R→ Rn (3.1)

We can then define a tangent vector in the usual way for curves in Rn. The tangent
vector to the curve γ in the chart U at the point p = γ(u) is defined by

vγ,U,p = (
d

dλ
φU ◦ γ(λ))|λ=u (3.2)

with v ∈ Rn. Because of this, any manifold is required to be at least C1 to admit vectors
at every point.
For the expression in another chart V such that V ∩ U 6= ∅,

vγ,V,p = (
d

dλ
φV ◦ γ(λ))|λ=u = (

d

dλ
τUV ◦ φU ◦ γ(λ))|λ=u (3.3)

So that, by the chain rule, we have

vγ,V,p =
dτUV
dφU(p)

vγ,U,p (3.4)

If the chart U has the coordinate system xµ(p) = φµU(p) and the chart V has the coordinate
system yµ(p) = φµV (p), the transition map will be the expression of yµ in terms of xµ,
τUV (p) = yµ(xν(p)). This corresponds to

dτUV
dφU(p)

=
∂yµ(x)

∂xν
(3.5)

This is the Jacobian matrix of the transformation of coordinates, as one could expect
from a change of coordinates.
If we take a slightly more general transformation, with the use of a diffeomorphism
f ∈ Diff(M), the coordinate expression of the curve in f(M) will be f ◦ φU ◦ γ(λ)
A tangent vector at p ∈M is an equivalent class of vectors v where two curves at p give
rise to the same vector in the same chart if vγ,V,p = vγ′,V,p, and vectors in two different
charts are equivalent if they obey the transformation law.
The set of all such tangent vectors at p is the tangent space, denoted TpM .

Proposition 3.1. The tangent space has the structure of a vector space.

Proof. Check that tangent vectors obey tangent space rules :
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• The product of a tangent vector X by a scalar a ∈ R is a tangent vector : Consider
the reparametrization of a curve with tangent vector X by λ → aλ. By the chain
rule, aX is the tangent vector of this curve.

• The sum of two tangent vectors is a tangent vector : Consider the curve in a
small enough neighbourhood of p formed by the sum of the components of γ1(λ)
with tangent X1 and γ2(λ) with tangent X2. By the linearity of the derivative the
resulting curve has tangent vector X1 +X2.

Proposition 3.2. The vector space structure is preserved by diffeomorphism.

Proof. bla

• Multiplication by a scalar : If we have

• Sum of two vectors :

3.1.1 Basis

Since the tangent space at p is a (finite-dimensional) vector space, it can be equipped
with a basis. Arbitrary basis are noted by a set of n tangent vectors (eµ). We can show
that given coordinates in a patch around p, there exists a basis formed from them, called
the coordinate basis.
For a point p in a chart (U, φ), consider the family of n curves γν defined by the coordinates
φµ ◦γν(λ) = (φ0(p), φ1(p), ..., φν(p)+λ, ..., φn−1(p)), where only the ν-th coordinate varies
with respect to λ (this correspond to the axis of that coordinate). This is called a
coordinate curve. With this we can define

Definition 3.3. A coordinate basis vector ∂ν at p for the coordinate chart (U, φ) is the
tangent vector defined by the tangent of the ν-th coordinate curve going through p.

Theorem 3.4. The set of all coordinate basis vectors at p forms a basis for the tangent
at p.

Proof. Since the curve is C1 at p, by Taylor’s theorem, we can expand around λp, the
value for which γ(λp) = p :

φ ◦ γ(λ) = φ(p) + (λ− λp)X(λp) + (λ− λp)2h(λp) (3.6)

Since X(λp) can be decomposed in some basis of Rn, pick the canonical basis {eµ} and
then

φ(p) + λX(λp) = φ(p) +
n∑
µ=0

λXµeµ =
n∑
µ=0

Xµφ ◦ γµ(λ) (3.7)

So that the derivative becomes
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X = [
n∑
µ=0

Xµ d

dλ
(φ ◦ γµ(λ)) + 2(λ− λp)

d

dλ
h(λp)]λ=λp

=
n∑
µ=0

Xµ∂µ

Hence any tangent vector can be decomposed, in Einstein notation, as X = Xµ∂µ, with
Xµ called the components of the tangent vector. By some abuse of notation, Xµ will
often be referred to as the vector itself.
The coordinate basis vectors transform in the same way as any vector
Transformation of components :

Xµ∂µ → XµJµ
′
µ∂µ′ (3.8)

We can then define vector fields as the associations of a vector to every point of the
manifold. While it is possible to define Ck vector fields with this definition of vectors (for
instance by defining them as the vectors associated to a Ck foliation of the manifold by
curves), it will be much simpler to do so with the definition of vectors as derivatives in
the next section.

3.1.2 Left and right derivatives

As we will also consider curves that are only piecewise C1, it will be useful to also require
the usual notion of left and right derivative.
The left tangent vector X− = γ′− is the vector defined by, in the coordinate patch U ,

X−(λ) = lim
h→0−

1

h
[φU ◦ γ(λ+ h)− φU ◦ γ(λ)] (3.9)

while the right tangent vector X+ = γ′+ is the vector defined by, in the coordinate patch
U ,

X+(λ) = lim
h→0+

1

h
[φU ◦ γ(λ+ h)− φU ◦ γ(λ)] (3.10)

In the case of a piecewise C1 curve, we may have some point p = γ(λ) that X+(λ) 6=
X−(λ). Such a point is called a corner of the curve. Further properties on corners will
be defined once the metric tensor is defined.

3.2 Vector fields as derivatives on smooth functions

Another way to define vector fields on manifolds is as directional derivatives on the set
of smooth functions C∞(M). While less intuitive than the definition via curves, it will
be a much easier definition to deal with to prove theorems regarding them.
A derivation D can be defined as a function

D : C∞(M)→ C∞(M) (3.11)
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Its properties are that, for any a, b ∈ R, and f, g ∈ C∞(M), we have

D(af + bg) = aD(f) + bD(g) (3.12)

D(fg) = gD(f) + fD(g) (3.13)

which correspond to the linear property and the Leibniz property of derivatives. We will
note the set of all derivations on M by Der(C∞(M)), or Der(M) for short.

3.2.1 Germ of a function

First, if we wish to define individual vectors, we will need the notion of a germ of a
function, which is an equivalence relation

Lemma 3.1. For v ∈ TpM , if f, g ∈ C∞(M) such that f = g in a neighbourhood U of
p, then v(f) = v(g).

Proof. By linearity, v(f) = v(g) is equivalent to v(f − g) = 0, so that we need only to
show it true for a function locally equal to 0. For a bump function g with support in u,
we have fg = 0 on all of M. By the properties of the derivation

[v(fg)](p) = g(p)[v(f)](p) + f(p)[v(g)](p) = 0 (3.14)

Since f(p) = 0 and g(p) = 1, we have [v(f)](p) = 0.

Lemma 3.2. For v ∈ TpM and a constant function h on a neighbourhood of p, v(h) = 0.

Proof. By the previous lemma, v(h) will be the same as v(c), for a constant function of
value c, or the function c · Id. Then we have

v(c Id) = cv(Id) = cv(Id · Id) = 2cv(Id) Id = 2cv(Id) (3.15)

Which means that v(Id) = 0 and so is v(h).

3.2.2 Vector fields

A vector field is defined as a derivation of smooth functions C∞(M). The easiest way to
picture this derivative as defining vectors fields is to consider an expression of one :

[V (f)](p) =
∑
µ

V µ(p)
∂

∂xµ
(f ◦ φ−1(p)) (3.16)

It can easily be checked that this is a derivation. We will see that in a chart, all vec-
tor fields can be expressed in such a way, with n functions V µ(p) corresponding to the
components and a basis ∂µ.
Vector space structure on Der(M) : we define the addition and product of derivatives,
for D1,D2 ∈ Der(M)

(D1 + D2)(f) = D1(f) + D2(f)

(aD1)(f) = aD1(f)
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Vector field is smooth on an open set U ∈M if for every f ∈ C∞(V ), V (f) is C∞(U ∩V ).
Likewise, a vector field is Ck(U) if for every f ∈ C∞(V ), V (f) is a function Ck(U ∩ V ).
Tangent bundle :

TM =
⊔
p∈M

TpM (3.17)

We will delve into the tangent bundle in greater details, such as its topology, in the
chapter on fiber bundles. For now we will only consider it as the set of all tangent spaces.
As it is the association of a tangent space to every point of the manifold, we can identify
the space of vector fields X(M) with the tangent bundle. Hence a vector field will just
be a map X : M → TM .

3.2.3 The coordinate basis

The basis of a vector field considered as a derivative is much simpler to consider. Take
the basis vectors ∂µ in a coordinate patch U with coordinates xµ defined by

∂µ(f) =
∂

∂xµ
(f ◦ φ−1

U )|φ(p) (3.18)

As a derivative, it trivially fulfils the properties of a derivation.

Proposition 3.5. The coordinate basis forms a basis of the tangent space TpM , such
that any vector can be written as

X = Xµ(p)∂µ|p (3.19)

Proof. Since X(c) = 0, we can assume that φ(p) = 0. If g is a smooth function on U , we
define for i ∈ N

gν(x
µ) =

∫
∂g

∂xν
(txµ)dt (3.20)

g = g(0) + gνx
ν (3.21)

If we set g = f ◦ φ

f = f(p) + fνx
ν (3.22)

Proposition 3.6. If the chart of a manifold is C∞, the components of a Ck vector field
are Ck(M) functions.

Proof. A Ck vector field maps smooth functions to Ck functions, hence for a Ck vector
field V ,

V [f ] = V µ∂µ[f ] = V µ ∂

∂xµ
(f ◦ φ−1

U )|φ(p) (3.23)

As f and φ are smooth, V [f ] will only be Ck if V µ is

Conversely,
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Proposition 3.7. For an atlas (Uα, φα) and a family of Ck functions V µ
α , each defined

on Uα, the vector fields V µ
α ∂µ on each Uα form a single Ck vector field on M if and only

if, on Uα ∩ Uβ, we have
V µ
β = Jµν (α, β)V ν

α (3.24)

Corrolary 3.1. Any family of n Ck functions on a manifold covered by a single chart
defines a vector field.

Proposition 3.8. A Ck manifold is only guaranteed Ck vector fields at most.

Proof. Since the application of a vector field to a function V (f) is represented by the
R→ Rn function V (f) ◦ φ−1 for differentiability, it will be at most Ck.

3.3 Link between the two

Theorem 3.9. On a Hausdorff manifold, there is a canonical isomorphism

τ : X→ Der(M) (3.25)

between the C∞(M)-module of vector fields on M and the derivatives of C∞(M).

3.4 The pushforward

If we have a map φ between two manifolds M and N , we can map scalar fields to N via
the pullback. In addition, it is possible to uniquely map vector fields via the pushforward,
or differential map.

Definition 3.10. For a map φ : M → N a Ck map between two Ck manifolds, and a
Ck−1 vector field X on M , the pushforward of X by φ is done by the differential map
dφ, defined by

dφ : TM → TN

[dφ(X)](f) 7→ X(φ∗f)

Described by the commuting diagram

TM TN

M N

πTM

df

πTN
f

Figure 4: Diagram of a differential map

The differential map is also sometimes noted by φ∗ or Tf , but we will stick with the df
notation here.
If we get a basis ∂µ in a coordinate patch of TM and a basis ∂a in a coordinate patch of
TN , the components of the differential maps are

[df(Xµ∂µ)] = [df(∂µ)]aXµ∂a (3.26)
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Written as

[df(∂µ)]a = dfaµ (3.27)

dim(M)× dim(N) dimensional matrix

Definition 3.11. The rank of a linear transformation is the dimension of its image

Properties of the differential :

d : C∞ → X∗(M) (3.28)

d is linear, obey the Leibniz rule, chain rule

3.5 Integral curves and vector flow

For any vector field X, we can associate a family of curves γ obeying the differential
equation

d

dλ
γ(λ) = X(γ(λ)) (3.29)

meaning that at parameter λ, and at the point p = γ(λ), the curve γ will have the
tangent vector X(p). Thus, for every point p, there is a curve γ(λ) going through that
point with tangent vector X(p). By the Picard–Lindelöf theorem, if X is uniformly
Lipschitz continuous, that curve is locally unique given some initial point p such that
γ(0) = p, γ′(0) = X(p).
This allows us to define the flow of a vector field.

Definition 3.12. Given a vector field on U ⊂ M , the flow of a point p by the vector
field X at t is the point γ(t) of the integral curve γ of tangent X for γ(0) = p. It is noted
by the function

Φ : M × X× R → M

(p,X, t) 7→ ΦX
t (p) = γ(t)

Flow of a complete vector field X :
such that γ is the maximal integral curve at p with initial tangent vector Xp.

3.6 Lie brackets

Since we can define vector fields as derivatives, it is then possible to chain them by

XY (f) = X(Y (f)) (3.30)

for X, Y two vector fields on M. Unfortunately, XY does not define a vector field for it
does not obey the Leibniz property :

XY (fg) = X(Y (fg)) = X(gY (f) + fY (g)) (3.31)

= X(gY (f)) +X(fY (g)) (3.32)

= Y (f)X(g) + gX(Y (f)) + fX(Y (g)) + Y (g)X(f) (3.33)

= (gXY (f) + fXY (g)) + Y (f)X(g) + Y (g)X(f) (3.34)
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But we can notice that conversely,

Y X(fg) = (gY X(f) + fY X(g)) + Y (f)X(g) + Y (g)X(f) (3.35)

meaning that the commutator of two vector fields

[X, Y ] = XY − Y X (3.36)

will define itself a vector field. We call this the Lie bracket, corresponding to the map

[X, Y ](f) = X(Y (f))− Y (X(f)) (3.37)

Alternatively, if we consider vector fields as tangent of curves, we can define the Lie
brackets in terms of the flow ΦX

λ associated with the vector field X, in which case

[X, Y ](x) = lim
t→∞

(dΦX
−λ)− Y (ΦX

λ )

t
(3.38)

As the vector field acts linearly on functions, if we express the vectors in the coordinate
basis, we have

[X, Y ](f) = [Xµ∂µ, Y
ν∂ν ](f)

= Xµ∂µ(Y ν∂ν(f))− Y ν∂ν(X
µ∂µ(f)) (3.39)

= (Xµ∂µY
ν − Y µ∂µX

µ)∂ν(f) (3.40)

Since a coordinate vector field has constant components, the Lie brackets of coordinate
vector fields are zero.

3.6.1 Properties

Since vector fields are linear, so are Lie brackets

[aX + bY, Z] = a[X,Z] + b[Y, Z] (3.41)

As with all commutators, Lie brackets anticommute

[X, Y ] = −[Y,X] (3.42)

which implies that [X,X] = 0.
Lie brackets obey the Jacobi identity :

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 (3.43)

which can be proven by expanding it

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = XY Z −XZY − Y ZX + ZY X

+ ZXY − ZY X −XY Z + Y XZ

+ Y ZX − ZXY − Y XZ + ZY X

It can be checked that every term is cancelled out.
With those properties, vector fields coupled with the Lie bracket form a Lie algebra.
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3.7 Dual vectors

Dual vectors are defined as the set of linear functions on vectors, that is, for a dual vector
ω belonging to the space of dual vectors at p T ∗pM , it is defined by

ω : TpM → R
X 7→ ω(X) (3.44)

obeying the linear property

ω(aX + bY ) = aω(X) + bω(Y ) (3.45)

Theorem 3.13. The space of dual vectors T ∗pM is a vector space of the same dimension
as TM .

Proof. Sum of two dual vectors : The action of ω1 + ω2 on a vector X is ω1(X) + ω2(X)
(still a linear transformation) Product of dual vector with a scalar a ∈ R : Defined by
aω acting on X as aω(X)
As the tangent space itself forms a vector space, vectors can be expressed in a basis eµ
by Xµ∂µ. We define the dual vectors θµ by θµ(eν) = δµµ. Then we can decompose ωX as

ω(Xµeµ) = Xµω(eµ) (3.46)

If each ω(eµ) has the value ωµ, then we can write ω as

ω = ωµθ
µ (3.47)

Then {θµ} is a basis that spans the entire dual vector space.

Corrolary 3.2. The dual tangent space T ∗pM is of the same dimension as TpM , and
hence as M .

A particularly useful basis for the dual tangent space is the dual of the coordinate basis,
noted dxµ, such that dxµ(∂ν) = δµν

3.8 Tensor algebra

Once we have vector spaces and their duals defined on every point of the manifold, we
can construct additional structures from it, first among which are tensors.

3.8.1 The tensor product

The tensor product of two vector spaces V,W , noted V ⊗W , is defined as an equivalence
class on the Cartesian product V × W , with the following vector space structure. If
v, v1, v2 ∈ V , w,w1, w2 ∈ W , then

(v1, w) + (v2, w) ∼ (v1 + v2, w)

(v, w1) + (v, w2) ∼ (v, w1 + w2)

c(v, w) ∼ (cv, w)

c(v, w) ∼ (v, cw)
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In the case of the tensor product of two dual vector spaces, we can apply two vectors to
it in the following way. For (ω1, ω2) ∈ V ∗ ⊗ V ∗ and v1, v2 ∈ V ,

(ω1, ω2)(v1, v2) = (ω1(v1), ω2(v2)) (3.48)

If we express the vectors in a basis, by bilinearity

(V µeµ,W
νeν) = V µW ν(eµ, eν) (3.49)

3.8.2 The tensor algebra

Tensors on a vector space are defined by the application of the tensor product ⊗, which
forms the tensor algebra T (V ) = (V,⊗).

Tensor space of rank (r, s) :

T rs (V ) = V ⊗r ⊗ V ∗⊗s (3.50)

T rs ⊗ T r
′

s′ = T r+r
′

s+s′ (3.51)

Our tensor algebra at p will be defined with the two vector spaces TpM and T ∗pM

Proposition 3.14. A tensor of rank (r, s) is a multilinear map from V ⊗r to V ∗⊗s.

Proposition 3.15. There’s an isomorphism between tensors of rank (r, s), r + s = 2,
and matrices M ∈ Matn×n.

Proof.

3.9 Quadratic forms

Real quadratic form :

Q : V × V → R
X, Y 7→ Q(X, Y )

Bilinear

Theorem 3.16. For a given basis {eµ} of V , there is a unique matrix Q ∈ Mn×n associ-
ated to a quadratic form such that Q(X, Y ) = XTQY .

Proof. X in the basis : X =
∑

µX
µ,

Q(X, Y ) = XµY µQ(eµ, eν) (3.52)

Define Qµν = Q(eµ, eν)
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3.9.1 Eigenvectors of a quadratic form

QX = λX (3.53)

det(Q− λI) = 0 (3.54)

Theorem 3.17.

3.9.2 Signature of a quadratic form

A quadratic form is said to be of signature (p, q, r) if it has p positive eigenvalues, q
negative eigenvalues and r zero eigenvalues.

3.10 Exterior algebra

On any vector space V we can define the exterior algebra defined by (V,∧), with ∧ the
exterior product defined by

X ∧ Y = −Y ∧X
(aX1 + bX2) ∧ (cY1 + dY2) = acX1 ∧ Y1 + adX1 ∧ Y2

+ bcX2 ∧ Y1 + dbX2 ∧ Y2

Interior product :

i : V × Λp → Λp−1

(v, ω) 7→ ivω

(ivω)(v1, ..., vp−1) = ω(v, v1, ..., vp−1) (3.55)
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4 Lorentz vector spaces

Lorentz vector spaces are the setting used for special relativity.
It will be the structure we will later use for the tangent space TpM of every point.
Making those structures global : chapter on fiber bundles and the metric tensor.

4.1 Lorentz inner product

Many of the deep results of general relativity lie in the subtle properties of inner product
spaces that allow for negative norms.

Definition 4.1. Let V be an (n+ 1)-dimensional real vector space. A Lorentzian inner
product on V is a nondegenerate symmetric bilinear map g : V × V → R and vectors
e0, . . . en such that g(e0, e0) = −1, g(ei, ei) = 1 for all i, and g(eµ, eν) = δµν for all µ, ν.
The pair (V, g) is a Lorentzian vector space.

From linear algebra it is known that there are εµ ∈ V ∗ such that

g = −ε0 ⊗ ε0 +
n∑
i=1

εi ⊗ εi.

Since g is nondegenerate, it furnishes an isomorphism V → V ∗ by x 7→ g(x, ·). We will
commonly denote g by 〈·, ·〉. We define the norm as |x| = |〈x, x〉|1/2.
The components of this inner product in the basis {eµ} are expressed by ηµν = η(eµ, eν),
given by the relation

η(vµeµ, w
νeν) = vµwνη(eµ, eν) = vµwνηµν (4.1)

4.2 Symmetries of Lorentz vector spaces and the

Poincaré group

We will define the group of all symmetries that keep the norm of the metric tensor
invariant by the Lorentz group O(1, n). To construct it, consider first the transformation
Λ ∈ GL(n,R). We want the subgroup obeying

x (4.2)

ΛTgΛ = g (4.3)

This is equivalent to the invariance of the norm g(x, y)

(Λx)TΛTgΛ(Λy) = xTgy (4.4)

ηµν → ηµνΛ
µ
αΛν

β (4.5)

ηµνv
µvν → ηµνΛ

µ
αΛν

β(Λα
ρv
ρ)(Λβ

σv
σ) (4.6)
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The members of the Lorentz group will be defined as the linear transformations that leave
the metric invariant.

O(1, n) = {Λ ∈ Matn×n |ΛηΛ = η} (4.7)

in which case we have

ηµνΛ
µ
αΛν

β(Λα
ρv
ρ)(Λβ

σv
σ) = ηαβ(Λα

ρv
ρ)(Λβ

σv
σ)

= ηρσv
ρvσ (4.8)

which shows that it indeed preserves the Lorentzian inner product.

Proposition 4.2. The Lorentz group is a Lie group.

Proof. Something something preimage theorem, subset of Rn2

Lie group with Lie algebra of the Lorentz algebra
4 connected components to the Lorentz group : Connected to the identity, time-reversed,
space-reversed and time and space reversed

O(n, 1) SO(n, 1)

O↑(n, 1) SO↑(n, 1)

Figure 5

4.2.1 Lie algebra of the Lorentz group

4.2.2 Representation of the Lorentz group

Connected to the identity :

Λµ
ν = eiωJ (4.9)

Complexified basis of the Lie algebra :

Ai =
Ji + iKi

2

Bi =
Ji − iKi

2

Proposition 4.3. The algebra basis {Ai} and {Bi} are each basis of the su(2), and
commute with each other.

Proof.

[Ai, Aj] =
1

4
[Ji + iKi, Ji + iKi]

=
1

4
([Ji, Ji] + i [Ki, Ji] + i [Ji, Ki]− [Ki, Ki]) (4.10)
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4.2.3 Subgroups of the Lorentz group

Identity, {±I}, discrete rotations and boosts, O(k), O(k, 1)

4.3 Classification of vectors

Vectors in a Lorentzian vector space can be classified by the sign of their norm.

• timelike if g(v, v) > 0

• null if g(v, v) = 0

• spacelike if g(v, v) < 0

We will also say that a vector is causal if it is either null or timelike, that is, g(v, v) ≥ 0.

Proposition 4.4. We have the following relations among timelike and null vectors:

1. Two timelike vector are never orthogonal

2. A timelike vector is never orthogonal to a null vector

3. Two null vectors are orthogonal if and only if they are proportional.

Proof. 1. Clear from 1.4 (a).

2. Clear from 1.4 (b).

3. Let l1 and l2 be null and orthogonal. Fix a unit timelike vector u; we have

l1 = λ1u+ y1 and l2 = λ2y + y2,

where 〈u, yi〉 = 0. Orthogonality of l1 and l2 gives −λ1λ2 + 〈y1, y2〉 = 0. Since
λ2

1 = g〈y1, y1〉 and λ2
2 = 〈y2, y2〉, we obtain

〈y1, y1〉〈y2, y2〉 = 〈y1, y2〉2.

Since g is positive definite on Ry1⊕Ry2, we have y2 = λy1. This implies λ2 = λλ1,
and we are done.

4.3.1 Subspaces

As an n-dimensional vector space, a Lorentz vector space admits a number of subspaces.
They can be classified by the class of vectors it contain.

Definition 4.5. Let V ⊂ W be a subspace. We have three possibilities:

1. W is spacelike if g � W is positive definite.

2. W is null or lightlike if g � W is strictly positive semi-definite.

3. W is timelike if neither (i) or (ii) hold.
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If W ⊂ V is a subspace, we define W⊥, the orthogonal subspace, to be {v ∈ V : 〈w, v〉 =
0 ∀w ∈ W}.

Proposition 4.6. Let W ⊂ V be a subspace.

1. W is timelike if and only if W⊥ is spacelike.

2. W is spacelike if and only if W⊥ is timelike.

3. W is null if and only if W ∩W⊥ 6= {0}, or equivalently, if and only if W⊥ is null.

Proof. 1. W contains a unit timelike vector w and V splits as S ⊕ Rw. Since g can
be negative definite on a subspace of at most dimension 1, we conclude that g is
positive definite on S. The forward direction follows. For the converse, suppose
W⊥ is spacelike. We have a splitting V = W ⊕W⊥. So if v ∈ V is timelike then
v = w + w′ where w ∈ W and w′ ∈ W⊥. Then 〈w,w〉 = 〈v, v〉 − 〈w′, w′〉 < 0, so w
is timelike and hence W is timelike.

2. Follows from (a) and W⊥⊥ = W .

3. W lightlike implies W contains a lightlike vector w0, but no timelike vector. Then
for all a ∈ R and w ∈ W , 〈w + aw0, w + aw0〉 = 〈w,w〉+ 2a〈w,w0〉 ≥ 0. Choosing
a negative enough, we see that 〈w,w0〉 = 0 for all w ∈ W , so w0 ∈ W ∩W⊥. On
the other hand, if 0 6= w0 ∈ W ∩W⊥, then w0 is null. Since W cannot contain a
timelike vector by (a), W is null. The other part follows from W⊥⊥ = W .

4.3.2 Light cones

The timelike vectors of a Lorentz vector space can be split in two categories

Definition 4.7. for a vector v, v⊥ is the set of all orthogonal vectors to v defined by
v⊥ = {u ∈ TpM|g(u, v) = 0}

Theorem 4.8. if u is timelike, the subspace u⊥ is spacelike.

Proof. If we have a timelike vector u and a vector v such that g(u, v) = 0, and we switch
the basis of TpM to (u, v, x, y), the new metric will be (g(u, u), g(v, v), g(x, x), g(y, y)).
The signature will be correct only if v is spacelike, as Sylvestere’s law dictates that a
change of basis cannot change the signature.

Theorem 4.9. There are two disjoint sets of timelike vectors at p.

Proof. If we pick any timelike vector u in TpM, let’s define the future lightcone :

T+(u) = {v ∈ T |g(u, v) < 0} (4.11)

And the past lightcone

T−(u) = {v ∈ T |g(u, v) > 0} (4.12)

Obviously T+(u) ∩ T−(u) = ∅, and g(u, v) = 0 is impossible since only spacelike vectors
are orthogonal to timelike vectors.

We will call timelike (resp. null, causal) vectors in C+ future-directed timelike (resp.
null, causal) vectors, and past-directed if they are in C−.

50



Figure 6: The light cone in (R2, η)

4.3.3 Properties

Proposition 4.10. The sum of two timelike vectors ξ1, ξ2 belonging to the same light
cone

Definition 4.11. A tensor T is said to be future (resp. past) if T (u1, . . . , un) ≥ 0 (resp.
≤ 0) for all future-directed vectors ui. A causal tensor is a tensor which is either future
or past.

Generalizes to T rs tensors and tensor fields.

4.4 Basis of the tangent space

As the product of two vectors remain constant under Lorentz transformation, so will the
basis remain orthonormal under it. This will allow us to define new more appropriate
basis.
We may then define timelike (resp. null, spacelike) vectors in this new orthonormal basis
as v = −|v|∂0 with ∂0 a timelike vector, v = |v|∂1 with ∂1 a spacelike vector, or v = ∂u,
with ∂u a null vector.

v = v0∂0 + ~v · ~e (4.13)

For a spacelike vector : Lorentz boost to the ~v direction

v → (4.14)

51



Canonical form of a timelike, null and spacelike vector : ξ = ±∂t, k = ±(∂t+∂x1), s = ∂x1

every vector can be expressed in that form up to rotation, dilation and reflection of the
basis

4.5 Analysis on vectors

Theorem 4.12. Any null vector k can be expressed as the convergence of a sequence of
timelike vectors.

Proof. If we write k in its canonical form k = ∂t + ∂x, we can use the sequence

ξn = ∂t + (1− n−1)∂x (4.15)

which is always of negative norm |ξn| = −n−1. It can be easily seen that this sequence of
vectors converges to the desired null vector.

|ξn − k| = | − n−1∂x| = n−1 (4.16)
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5 Fiber bundles

5.1 Definitions

A bundle is a way to add structures to a manifold M , by means of attaching to every
point of the manifold another manifold. This is expressed by the fact that we have a
manifold E called the total space (the original manifold plus the structures added to it)
which possesses a projection function π, a continuous surjection, defined by

π : E →M (5.1)

A bundle can thus be expressed by the triplet (E, π,M), generally noted as π : E →M .
It can also be noted by the total space E, or, since two different bundles can have the
same total space and base space, π. As there will be no confusion here, we will simply
use E.
A bundle is called a fiber bundle if the bundle is locally homeomorphic to the prod-
uct of the base manifold and the fiber F , another manifold. In other words, for every
point p of the base manifold, there’s a neighbourhood V 3 p such that there exists the
homeomorphism

ψ : V ×F → π−1(V ) (5.2)

in addition, the fibers at p :

∀p ∈M, π−1(p) = Fp (5.3)

are all isomorphic to the same manifold F , the typical fiber.

Example 5.1. The simplest example of a fiber bundle, called the trivial bundle, is the
cartesian product of the manifold with any space F , M × F , which has the projection
function

π : M × F → M

(p, f) 7→ p (5.4)

and the single local trivialization neighbourhood of M ×F , with the identity as its map.

Definition 5.2. For a fiber bundle π : E →M , with dimE = n, dimM = n, an adapted
coordinate system is a map

y : U ⊂ E → Rm+n (5.5)

such that for a, b ∈ U , π(a) = π(b) = p, we have π1(y(a)) = π1(y(b)).

In other words, two points in the same fiber share the same adapted coordinates on the
base manifold. For a point a ∈ E where π(a) = p, y(a) = (φ(p), u), with

Theorem 5.3. A fiber bundle over a manifold is itself a manifold.

Proof. The adapted coordinates of a fiber bundle give us a natural manifold structure.
If we take a coordinate patch φM : UM ⊂ M → Rn and φF : UF ⊂ F → Rm, for every
point a ∈ E, there exists a local trivialization of its neighbourhoods Ua 3 a such that ψ
Trivializations form a cover something

Example : A quotient manifold M̄ = M/Γ with a map φ : M → M̄ is a fiber bundle with
base manifold M̄ , total space M , projection map π = φ and typical fiber Γ.
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5.1.1 Bundle morphisms

5.1.2 Sections of a bundle

The sections of a bundle E are assignments of a point in the fiber for every point of the
base manifold.

Definition 5.4. A local section of a fiber bundle π : E → M is a map s : U → E,
U ⊂M and open, such that π ◦ s = IdU . A global section is the case where U = M .

It is generally not possible to have a global section for a given fiber bundle.

The set of all sections of a bundle E is noted Γ(E). We say that a section of a bundle is
smooth if the map s is smooth.

Theorem 5.5. If the fiber F is contractible, there exists a global section.

Proof.

5.1.3 Structure groups

The cover {Vα} of the manifold and its associated local trivializations ψα : Vα × F →
π−1(V ) is equipped with a group structure, such that, for Vα ∩ Vβ 6= ∅, the homeomor-
phism

ψ−1
β,pψα,p : Fp → Fp (5.6)

is a member of a group G, gαβ(p) = ψ−1
β,pψα,p, where g(p) is continuous. Meaning that,

for p ∈ Vα ∩ Vβ ∩ Vγ,

gγβ(p)gβα(p) = gγα(p) (5.7)

which means that for α = β = γ, we have

gαα(p)gαα(p) = gαα(p) = IdG (5.8)

And for α = γ,

gαβ(p)gβα(p) = IdG → gβα(p) = g−1
αβ (p) (5.9)

A fiber bundle will then be fully defined as (E, π,M,F , G), with the fiber bundle E, base
manifold M , projection function π, typical fiber F and structure group G. It will be
usually noted

F → E
π−→M (5.10)

or, for a shorter notation,

π : E →M (5.11)
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5.2 Pullback bundle

If there’s a continuous map f : M ′ → M and a bundle π : E → M , pullback bundle is
f ∗E

f ∗E = {(p′, e)|f(p′) = π(e)} (5.12)

Pullback bundle diagram

5.3 Algebra bundles

5.4 Vector bundles

One of the most important type of fiber bundles for general relativity is the vector bundle,
many structures on spacetime being constructed from them.
A vector bundle is a fiber bundle where the fiber F is a vector space.
Since all vector spaces are contractible (by the homotopy fs(t) = sγ(t)), all vector bundles
admit a global section. One of them that is valid for all vector bundles is the zero section
s0 : p ∈M 7→ 0 ∈ V .

Theorem 5.6. The zero section is a global section for all vector bundles.

Proof. Define local zero sections, since the vector bundle has GL as the structure group,
the 0 is preserved.

Basis of the vector bundle
Subspaces of the vector bundle

5.4.1 The line bundle

The simplest vector bundle is the line bundle, where the typical fiber is a field K, typically
R or C.

Proposition 5.7. There is a canonical isomorphism between Ck sections of the trivial
line bundle over K and the set of functions Ck(M) : M → K.

5.5 The tangent bundle and tensor bundles

The tangent bundle is a vector bundle of the same dimension as the manifold for which
every fiber is the tangent space, that is

π(TpM) = p (5.13)

Its structure group is GL(n,R), the group of linear transformations.
The construction of the tangent bundle is performed by attaching copies of the tangent
space at every point

TM =
⊔
p∈M

TpM =
⋃
i∈p

{p} × TpM (5.14)
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with the projection map

π : TM → M (5.15)

(p, v) 7→ p (5.16)

for v ∈ TpM . We then endow it with the following topology. Consider an open set
U ∈M . We can define

ψ̃U : π−1(U) → Rn × Rn (5.17)

(p, vµ∂µ) 7→ (φµ(p), vµ) (5.18)

(show that it’s a bijection and that ψ̃U(π−1(U)) is open in R2n)

Theorem 5.8. If a tangent bundle is trivial, the base manifold is orientable.

Proof.

Theorem 5.9. Smooth sections of the tangent bundle form a C∞(M)-module.

Theorem 5.10. There is an isomorphism between sections of the tangent bundle and
vector fields

Proof.

5.5.0.1 The complexified tangent bundle

For a few applications, it will be useful to define the complexification of the tangent
bundle, which has the tangent bundle as a subbundle but with typical fiber C× TpM

5.5.1 The cotangent bundle

Bundle of dual tangent spaces, same topology as tangent bundle

5.5.2 The tensor bundle

T rp q =
⋃
p,q∈N

T ∗M⊗p ⊗ TM⊗q (5.19)

Theorem 5.11. Any tensor field of rank (p, q) can be interpreted as a (p+q) linear map.

Proof.

Ck differentiable structure for Ck tensors

proof : if we have Ck differentiable structure, then functions at at most Ck, since defined
by f ◦ φ Ck tensors defined as mapping Ck vector to Ck functions Hence at most we can
have a Ck tensor
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5.5.3 Bitensors

For some applications, we will need the concept of bitensors. A bitensor is composed of
tensor quantities at two different points of the manifold. For two tensor bundles VM ,
WM with the same base manifold, VM �WM is the exterior tensor product, defined
by the vector bundle with typical fiber V ⊗W over the base manifold M ×M .
A section of the bitensor bundle will then be a map

B : M ×M → V ×W
(p, q) 7→ B(p, q)

Coincidence limit with the Synge bracket :

B[x] = B(x, x) (5.20)

In the coincidence limit, there’s a map between bitensors and the tensor product of V
and W
Most common bitensor : π : BM →M ×M with typical fiber of a tensor space.

5.5.4 The tensor density bundle

The s-tensor density bundle is a real line bundle over the manifold with typical fiber R

5.5.5 The exterior bundle

Exterior bundle ΛkM Antisymmetrization of the tensor bundle of rank (0, n)
The top exterior power has rank 1 and is hence a line bundle. If this line bundle is trivial,
then M is orientable.

5.5.6 Vertical and horizontal bundles

A useful bundle for the analysis of most other bundles will be the tangent bundle of that
bundle. That is, considering some bundle πY : Y →M , we’ll consider the tangent bundle

TY
πTY−→ Y

πY−→M (5.21)

As the bundle Y has a fairly natural local decomposition as FY ×M , we can decompose
the tangent bundle into subbundles, using the vertical space.

Definition 5.12. For a fiber bundle π : E →M , e ∈ E with π(e) = p, the vertical space
VeE at e is the tangent space TeEp, that is, the tangent space of the fiber Ep = π−1(p).

The vertical space at e will contain the vectors corresponding to changes in the value of
the section at p around the value e. It will later be related to the variation of a field.

Example 5.13. The trivial bundle π : S × S → S will have the tangent space at any
point Te(S × S) = R2. Its vertical space will be Ve(S × S) = R.

Proposition 5.14. The vertical space VeE is a subspace of TeE, the tangent space of
the bundle at E, of the same dimension as the fiber of E.
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Proof. Since Ep ⊂ E, we have that VeE = TeEp ⊂ TeE. For the properties of a subspace
:

• 0 ∈ VeE : as it is a vector space, 0 ∈ VeE, which will be the same 0 as TeE, since
πTE(0) = e ∈ Ep.

• X, Y ∈ VeE implies X + Y ∈ VeE :

• X ∈ VeE implies cX ∈ VeE

Proposition 5.15. For a vector bundle E, there is a canonical isomorphism between the
vertical space of the origin V0E

Definition 5.16. The horizontal space HeE is a subspace of TeE such that TeE =
VeE ⊕HeE.

Vertical and horizontal bundle : Disjoint union of the vertical and horizontal space,
V E = ker(dπ), dπ : TE → TM
As dπe is surjective, yields a regular subbundle of TE.

5.5.7 Solder forms

The soldering of a fiber bundle E with fiber F to the manifoldM , with dim(F ) = dim(M),
corresponds to the choice of some section sE : M → E along with some linear isomorphism

θ : TM → s∗EV E (5.22)

where s∗EV E is a pullback of the vertical bundle of E along this section. In essence, what
the solder form does is to ”solder” (ie identify) the vertical space to the tangent space.
This will be useful as things go on to adapt structures of the tangent space to other
bundles and vice-versa.
Solder form for vector bundles : if we choose the zero section, then s∗0V E ≈ E, so that
the solder form is

θ : TM → E (5.23)

The simplest solder form is the one of the tangent bundle to itself,

θ : TM → TM (5.24)

The canonical solder form chosen for it is obviously the identity.

5.6 Principal bundles

Principal bundle : fiber is a Lie group, structure group is the same as the Lie group, left
action
Associated bundle to a principal bundle : representation of the Lie group acts upon the
vector bundle, structure group is the Lie group of the principal bundle
Action of G on the principal bundle :
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φ : G× P → P (5.25)

φg(ξ) 7→ ξg (5.26)

5.6.1 Reduction of the structure group

Given a subgroup H of G and a principal H-bundle π : P ′ →M , we say that a principal
G-bundle π : P → M admits a reduction to the group H if there exists a smooth map
Φ : P ′ → P such that it covers the identity on M and is H-equivariant

∀g ∈ G, h ∈ h, Φ(g.h) = Φ(g) · h (5.27)

Show it’s equivalent to P ′ = P/H having a section

5.7 The frame bundle

There is a particular bundle of importance, the frame bundle, that is both a vector bundle
and a principal bundle, and is linked directly with the structure of the manifold itself and
its tangent bundle.
For a real vector bundle E → X, a frame at x ∈ X is an ordered basis for EX . Frame
is a linear isomorphism p : Rk → Ex. The set of all frames at x, Fx, has a natural right
action by GL(k,R). For g ∈ GL(k,R), p ◦ g is a new frame. Fx is homeomorphic to
GL(k,R).

Definition 5.17. A manifold that admits a global section of the frame bundle is called
a parallelizable manifold.

Orthonormal frame bundle OM : restriction to the frame bundle with structure group
O(n)
if orientable : the oriented orthonormal frame bundle with group SO(n)
Reduction of the frame bundle to the orthonormal frame bundle GL(n,R)→ O(p, q)
For orientable manifolds, (orthogonal) frame bundle to oriented (orthogonal) frame bun-
dle GL(n,R)→ GL+(n,R) and O(p, q)→ SO(p, q)

5.7.1 The solder form

If we define a vector bundle VM with typical fiber Rn, dim(M) = n, the soldering of
Solder 1-forms
Solder form from FM × V → TM

5.8 Associated bundles and physical fields

In classical physics, matter fields are represented by sections of vector bundles.
Scalar fields : line bundle
Tensor fields : tensor bundle
Spinor fields : associated bundle to the Clifford bundle
Gauge fields : principal bundle
Example : SU(3) for QCD, SU(2)× U1 for electroweak
Associated bundle to a principal bundle : Fields with gauge symmetry
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5.9 The sphere bundle

Fiber is Sn−1

Equivalent to the existence of a nowhere vanishing vector field

Definition 5.18. A direction field, also called line element, is a section of the projec-
tivized tangent bundle

5.10 The jet bundle

5.10.1 Jets and jet manifolds

Jets correspond to the bundle equivalent of the Taylor expansion of functions. They will
offer us the rigorous justification behind many arguments based on first-order expansions.
This is done by equivalence classes on their derivatives.

Definition 5.19. For a bundle (E, π,M), p ∈M and two local sections f, g ∈ Γp(π), we
say that f and g are 1-equivalent if f(p) = g(p) and, in some bundle coordinate system
(xµ, uα) around f(p),

∂fα

∂xµ
|p =

∂gα

∂xµ
|p (5.28)

The equivalence class of functions 1-equivalent to f at p is called the 1-jet of f at p, or
j1
pf .

Proposition 5.20. For f, g ∈ Γ(π) such that f(p) = g(p), we have j1
pf = j1

pg if and only
if f∗|TpM = g∗|TpM .

Proof.

Definition 5.21. The first jet manifold of π

Definition 5.22. The r-th jet manifold is

Jr(π) =
{
jrpσ|p ∈M,σ ∈ Γ(p)

}
(5.29)

Differential equations as jet sections
Infinite jet
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6 The metric

The metric is the most important quantity for the study of spacetimes. Its primary use
will be to define an inner product on vectors, and through this, a norm as well. It is an
inner product of tangent vectors, generally defined as

g : TM × TM → R (6.1)

unlike for most inner products, we don’t require a restriction to R+, nor for it to be
positive definite, although the other conditions of symmetry and bilinearity are kept :

g(X, Y ) = g(Y,X)

g(aX1 + bX2, cY1 + dY2) = ac g(X1, Y1) + ad g(X1, Y2)

+ bc g(X2, Y1) + db g(X2, Y2)

There are two ways of defining the metric : from the definition, we can see that it can
be a section of the (0, 2) tensor bundle, and we can also define it directly as a bilinear
function on the tangent bundle itself, called the bundle metric.

6.1 The metric tensor

The metric tensor is defined as a section of a subbundle of the (0, 2) tensor bundle, defined
by all tensors being symmetric

∀X, Y ∈ TM, T (X, Y ) = T (Y,X) (6.2)

and of signature (p, q). This subbundle is called the S(p, q) bundle, Sp,qM .

Proposition 6.1. The set of symmetric tensors is open in T 1
1M .

Proof.

The metric tensor is defined as a section of that bundle

g : S(p, q) ⊂ TpM× TpM→ R (6.3)

As with all tensors, we can define the components in some coordinate patch by

g(∂µ, ∂ν) = gµν (6.4)

And those components will transform covariantly

gµ′ν′ =
∂xµ

∂xµ′
∂xν

∂xν′
gµν (6.5)

By linearity, the product of two vectors in this basis will be

g(X, Y ) = g(Xµ∂µ, Y
ν∂ν) = gµνX

µY ν (6.6)

By an abuse of terminology, gµν itself will often be called the metric tensor.
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6.1.1 Smoothness

The metric is usually assumed to be smooth, or at least C2.

Relation between smoothness of manifold and metric???

6.1.2 Signature of the metric

The signature of a metric at a point is noted as (p, q, r), if its associated bilinear form
has p negative eigenvalues, q positive eigenvalues and r zero eigenvalues. For almost all
applications, we will only consider r = 0, and the metric will be of the same signature
(p, q, 0), or (p, q), for the entire manifold.

6.1.3 Determinant of the metric

A quantity that will be useful in future chapters will be the determinant of the metric
tensor, defined as

det(g) =
1

n!
εµ1µ2...µnεν1ν2...νngµ1ν1 ...gµnνn (6.7)

Theorem 6.2. The determinant of the metric g is always of the sign (−1)p.

Proof. Determinant doesn’t change sign with coordinates (cf Sylvester’s law), and there’s
a coordinate system where g = diag(−1,−1, ..., 1, 1, ...), which is of determinant (−1)p

In particular, the determinant of a spacetime metric will always be negative. Checking
the sign of the determinant is a good method to check whether or not the metric is still
Lorentzian when varying a component.

6.2 Frame fields

Another way to consider the metric on a manifold is via the use of frame fields, also
known as vierbein or tetrad fields.

A frame field is a section of the frame bundle

6.2.1 Bundle metric

A bundle metric is a metric defined on a vector bundle E by

〈·, ·〉 : E × E →M × R (6.8)

associating for every section of the vector bundle a value to every point of the manifold.

The bundle metric that will interest us will be the bundle metric defined on the tangent
bundle, defined by

〈∂µ, ∂ν〉 = ηµν (6.9)

with η the Minkowski metric.
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6.2.2 Frame fields

for a section of the frame bundle {eµ}, a vector V ∈ TM can be decomposed as

V = V µeµ (6.10)

Since the bundle metric is bilinear,

〈V,W 〉 = 〈V µeµ,W
νeν〉 = V µW ν〈eµ, eν〉 (6.11)

〈eµ, eν〉 = gµν (6.12)

6.2.3 Obstruction

Unlike for the metric tensor, constructing a section of the orthonormal frame bundle is
much harder than a section of the metric bundle.

Theorem 6.3. A non-orientable manifold is not parallelizable.

If we try to construct a global section for a non-orientable manifold, overlap has frames
of different orientation.

Theorem 6.4. An orientable 3 + 1 dimensional spacetime with the structure R×Σ, for
Σ a compact manifold, is parallelizable.

Proof. Orientable compact 3-manifolds are parallelizable, same with products of paral-
lelizable manifolds

Same proof for (1 + 1) dimensions
Frame field mostly useful locally because of this.

6.3 Topological obstructions to the metric tensor

So far, our definition of spacetimes admitted any of the non-pathological manifolds. In
particular any submanifold of R2n is covered by the definition we have used. Unfortu-
nately, not all manifolds admit a section of the metric bundle for arbitrary signatures,
although the class of manifolds concerned is of rather little physical interest.
For various applications, we will need a Riemannian metric, so it is of interest to first
study the obstructions for them.

Theorem 6.5. Every paracompact manifold admits a Riemannian metric tensor field.

Theorem 6.6. A smooth Hausdorff second-countable manifold admits a smooth metric
function g+.

Proof. If we pick an atlas {(Uα, φα)} for the manifold, with a subordinate partition of
unity {fα}, we can pick the metric function g(α) acting on Oα ⊂ Rn (for instance the
canonical metric on Rn)
Then

g+(u, v) =
∑
a∈A

fα(x)g(α)(dφα(u), dφα(v)) (6.13)
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Theorem 6.7. The existence of a continuous, nowhere zero direction field is equivalent
to the existence of a Lorentzian metric on a manifold.

Proof. Since the class of manifolds we are concerned with always admits a Riemannian
metric, we can combine it with the direction field to obtain the following metric :

g(x, y) = g+(x, y)− 2
g+(ξ, y)g+(x, ξ)

g+(ξ, ξ)

In a coordinate system with the orthonormal basis {ξ, xa}, it can be checked that the
signature of the metric is indeed (−,+,+, ...).
Conversely, if we have a Lorentz metric,

Theorem 6.8. Every non-compact manifold admits a continuous, nowhere zero vector
field.

Proof. Every manifold admits a vector field that is only 0 on a set of measure 0 [PROVE
IT]

Corrolary 6.1. Every non-compact manifold admits a Lorentzian metric

For compact manifold, the proof is more involved, and is only available in Steenrod’s
”Topology of Fiber Bundles”, as every book on general relativity will reference. Here is
a sketch of this proof.
Consider the general linear group GL(n,R) of invertible real matrices of order n, O(n)
the orthogonal group and SO(n) the rotation group. S(n) is the subset of GL(n,R) for
symmetric matrices, and S(n, k) the subset of symmetric matrices of signature k.
Prove that S(n, k) is open in S(n) and that S(n) =

⋃n
k=0 S(n, k)

Metric of signature (p, q) is a global section of S(n, q)
Decomposition of invertible matrices τ as σ ∈ O(n) and α ∈ S(n, 0), the set of Rieman-
nian metrics, as

ψ : O(n)× S(n, 0) → GL(n,R) (6.14)

(σ, α) → σα (6.15)

[show that O(n)× S(n, 0) is a subbundle of the metric bundle]

Theorem 6.9. If σ ∈ Gr(n, k), α ∈ S(n, 0) and σα = ασ, then τ ∈ S(n, k).

Proof.

Theorem 6.10. A compact manifold admits a section of the Grassmanian line bundle
Gr(1, k) if and only if its Euler characteristic is χ(M) = 0.

Proof. If a manifold ha χ(M) = 0 then it admits a vector field, which can define a section
of the Grassmanian line bundle. Converse : If a manifold has a Grassmanian line bundle
section, it admits a double cover that admits a nowhere vanishing vector field. Since for
double covers χ(M ′) = 2χ(M) QED

Theorem 6.11. A compact manifold only admits a Lorentzian metric if and only if it
admits a continuous nowhere vanishing vector field
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Proof.

Corrolary 6.2. An odd dimensional compact manifold always admits a Lorentzian met-
ric. An even dimensional compact manifold will only admit one if its Euler characteristic
is zero.

In two dimensions, this limits the number of compact spacetimes to two : the torus and
the Klein bottle.
Equivalent of the theorem for obstruction : frame field is a section of an O(n) bundle
We will denote the set of all manifolds admitting a Lorentzian metric as Lor(M). The
set of all spacetimes will then be denoted by Lor(M)/Diff(M). A spacetime will then
be the association of a Lorentzian manifold M ∈ Lor(M)/Diff(M) and of a section of
the Lorentzian metric bundle g ∈ Γ(S(n, 1)M), noted (M, g).

6.4 Musical isomorphisms and the inverse metric

Having a metric tensor will let us define a canonical map between tangent and cotangent
vectors, and more generally between rank (r, s) tensors and rank (r′, s′) tensors, if r+s =
r′+s′. By partial application of a vector field X to the metric tensor, we have the function

g(X,−) : TM → R (6.16)

Y 7→ g(X, Y ) (6.17)

as the metric is bilinear, this quantity is a linear map from vector fields to R, meaning
that partial application of vector fields is a subset of T ∗M .
From this, we will define the musical isomorphisms.
The musical isomorphisms are isomorphisms between the tangent bundle and the cotan-
gent bundle. They are denoted by ] and [

[ : TM → T ∗M (6.18)

X 7→ X[ (6.19)

] : T ∗M → TM (6.20)

ω 7→ ω] (6.21)

And of course, ] ◦ [ = IdT ∗M and [ ◦ ] = IdTM .
If the manifold is equipped with a metric, it defines them canonically as

X[(Y ) = g(X, Y ) (6.22)

g(ω], Y ) = ω(Y ) (6.23)

Hence we can define X[ directly as g(X,−).

Proposition 6.12. [ is a bijection from the tangent bundle to the cotangent bundle.
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Proof. Injection : For X[ = 0

Proposition 6.13. If g is a Ck metric tensor, a smooth vector field X is mapped to a
Ck vector field X[.

Proof. g maps two smooth vector field X, Y to a Ck function g(X, Y ), hence X[(Y ) =
[g(X,−)](Y ) = g(X, Y ) maps smooth vectors to Ck.

To define the ] map outside of products, we’ll need the inverse of the metric tensor.

Proposition 6.14. There exists a rank (2, 0) tensor field g−1 such that, for every one-
forms ω, ω′ ∈ T ∗M , g−1(ω, ω′) = g(ω], ω′])

Proof. As the metric has a determinant g > 0, the matrix g is invertible at every point,
so there exists a matrix g−1. The inverse metric is the section of T 2

0 that associates the
matrix g−1 to every point. Since g(X, Y ) = g−1(X[, Y [), this is equivalent to, for ω = Y ],

[g−1(ω,−)](g(X,−)) = ωµg
µνXσgσν

= ωµX
σgσνg

µν (6.24)

= g(X,ω]) = ω(X) = ωµX
µ (6.25)

Hence gσνg
µν = δµσ . We can then find the coordinate transform rule by

gσνg
µν = δµσ (6.26)

= ... (6.27)

Proposition 6.15. If the metric tensor is a Ck tensor, the inverse metric is a Ck tensor
as well.

Proof. Since g is a Ck function, it will map smooth vector fields to Ck functions. Hence

g(X, Y ) = f ∈ Ck(M)

= g−1(X[, Y [) (6.28)

[But X[ already Ck???]

The components of the inverse metric tensor are calculated using the relation

gµνg
νσ = δσµ (6.29)

In particular, if gµν = diag(gαα), we have that gµν = diag(1/gαα)

gµνg
µν = n (6.30)

Prove that the inverse metric defines a tensor correctly (check on the intersections of the
trivialization)

Proposition 6.16. For any Ck metric tensor g defined on the manifold, there exists an
inverse metric tensor g−1, which is Ck as well.
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Proof. Since at every point of a coordinate chart, there exists an inverse of the metric at
that point, we need to show that the inverse metric on this chart is itself a Ck function.
Show that the inverse metric is defined correctly on chart overlaps

The musical isomorphisms define a solder form on the cotangent bundle

[ : TM → T ∗M (6.31)

6.5 Contraction

The contraction of a tensor is a map

C : T rsM → T r−1
s−1M (6.32)

C : T 1
1M → C∞(M)

X ⊗ ω 7→ C(X ⊗ ω) = ω(X) (6.33)

If linear,

C(X ⊗ ω) = XµωνC(∂µ ⊗ dxν) = Xµωνδ
ν
µ (6.34)

6.6 Raising and lowering operators

The raising and lowering operators are a generalization of the musical isomorphisms,
allowing to map tensors of rank (n,m) to tensors of rank (n+1,m−1) and (n+1,m−1).

↑: T nm → T n+1
m−1 (6.35)

Dual of a tensor

∗ : T prM → T rpM (6.36)

(Tαβγ...µνρ...)
∗ = Tαβγ...

µνρ... (6.37)

This lets us define a norm on tensors

| · | : T prM → R
T 7→ T ∗(T )

6.6.1 The Hodge star

The metric tensor lets us define the Hodge star, which maps k-forms to their dual

? : ΛkM → Λn−kM (6.38)

For two 1-forms α, β,

α ∧ (?β) = g(α, β)ε (6.39)
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6.7 Products and warped products

For (M1, g1) and (M2, g2) two Riemannian manifold, their product is (M1 ×M2)

6.8 Causal class of curves and vector

We can define several class of curves by their tangent vectors, and we will define timelike
(resp. null, causal and spacelike) curves to be curves with a tangent vector that is always
timelike (resp. null, causal and spacelike). Curves with tangent vectors that switch from
one type to the other are fairly rarely used, and so they do not have a specific name.

If a curve is only piecewise C1, then it is qualified as piecewise timelike (resp. null, causal
or spacelike) if it is so on every part of the curve that admits a derivative. Values where
the curve isn’t defined are called singular points.

If the curve is piecewise causal, and its left and right derivative u− and u+ at a singular
point p are in two different light cones in TpM, we call this point an interior corner of
the curve. If a piecewise timelike (resp. null, causal) curve has no interior corners, we
say that it is timelike (resp. null, causal).

[also define exterior corners]

6.9 Isometries

With the addition of the metric tensor, the equality between two spacetimes can no longer
solely rely on the diffeomorphism between the two manifolds. To compare two spacetimes
(M, g) and (M′, g′), we will need the introduction of isometries.

Definition 6.17. An φ : M → N between two manifolds is a diffeomorphism that
preserves the metric of the manifold : φ∗(gN) = gM

We will then say that two spacetimes are equivalent if there exists an isometry between
them.

Examples of isometries : discrete isometries (reflections, discrete rotations, etc)

Isometries of one parameter : translations, rotations, etc

Extensions of a manifold : M ′ is an extension of M if there exists an inclusion map
M ′ ↪→M such that there’s a subset of M ′ on which ↪→ is isometric.

Local isometry (cf Manchak)

6.10 Distances

The metric tensor allows us to define a length function on curves γ with tangent vector
u by considering the integral

lγ =

∫
S

g(u(λ), u(λ))
1
2dλ (6.40)

Depending on the signature of the metric and the class of curves, this will give rise to a
variety of notions of distances.
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6.10.1 Riemannian distance function

if g is Riemannian, this length can define an actual distance function on the manifold, by
considering the shortest curve connecting two points.

d(p, q) = min
γ(p,q)

∫ q

p

g(u(λ), u(λ))
1
2dλ (6.41)

where γ belongs to the class of all piecewise smooth curves.

Theorem 6.18. The function d(p, q) is a distance function on the manifold.

Proof. Just show that it obeys the distance axioms

1. d(p, q) ≥ 0 : As the Riemannian metric is itself ≥ 0, this property is verified

2. d(p, p) = 0 : Consider the trivial curve γ(λ) = p. Its tangent will be 0 for all λ,
which will always be the shortest curve in a Riemannian manifold.

3. d(p, r) ≤ d(p, q) + d(q, r) : by picking a random point q, we have

d(p, q) = min
γ(p,r)

[∫ q

p

g(u(λ), u(λ))
1
2dλ+

∫ r

q

g(u(λ), u(λ))
1
2dλ

]

4. d(p, q) = 0→ p = q : By the Hausdorff property, if p 6= q, there is a neighbourhood
Up that does not contain q. Then we can consider a point in Up on the curve
connecting p and q, and by the triangle inequality, d(p, q) ≥ ε > 0

6.10.2 Lorentzian lengths

As Lorentz metrics have negative norms, as well as zero norms for non-zero vectors,
they cannot define a distance function. Instead the length function lγ has the following
properties
For a timelike curve,

lγ = −
∫
S

dτ (6.42)

For a null curve,

lγ = 0 (6.43)

For a spacelike curve,

lγ =

∫
S

ds (6.44)

Theorem 6.19. If two points can be joined by a timelike curve, there is a lower bound
to the length of all timelike curves joining them.

Proof.
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7 Derivatives and connections

7.1 Lie derivative

The Lie derivatives measures the change of a tensor field along the flow of a given vector
field. It has the benefit of not requiring any extra structures on the manifold to be
defined.
It is defined in the usual way that derivatives are defined, by the limit of the difference
between two quantities.

Definition 7.1. Given φt a one-parameter group of diffeomorphisms generated by the
flow of a vector field X, The Lie derivative of a tensor field T with respect to X is defined
by

LV T = lim
t→0

φ∗−tT − T
t

(7.1)

For scalar fields :

LXf = X(f) (7.2)

For a vector field :

LXY = [X, Y ] (7.3)

Proposition 7.2.
L[X,Y ]T = LXLY T − LYLXT (7.4)

7.2 Exterior derivative

The exterior derivative d is a derivative defined on n-forms which offers the benefit of not
requiring any extra-structure on the manifold. It is defined by

d : ΛkM → Λk+1M (7.5)

? : ΛkM → Λn−kM (7.6)

Properties :

d(dω) = 0 (7.7)

For a k-form α :

d(α ∧ β) = dα ∧ β + (−1)k(α ∧ dβ) (7.8)

Poincaré theorem

Theorem 7.3. For a p-form α, p ≥ 1, if dα = 0

Frobenius theorem

Theorem 7.4. content...

Proof.
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7.3 Covariant derivative

To define the derivative of a tensor in the same way that we would in Rn, we need a way
to compare two tensors at different point of a manifold, that is, we need to define a way
for the usual derivative

lim
ε→0

X(p+ ε...)−X(p)

ε
(7.9)

to make sense. Since the manifold does not have a vector space structure, we cannot
really make sense of such an expression.

7.3.1 The Ehresmann connection

A common way to get a rather general definition of a connection is the Ehresmann
connection, which not only will give us a derivative for tangent vectors but quite a lot
more useful tools for general relativity and gauge theory.
As we saw in X, any fiber bundle E, being itself a manifold, admits a tangent bundle
TE, which can be split as the vertical bundle V E and a horizontal bundle HM

TE = HM ⊕ VM (7.10)

While the vertical space VeE is uniquely determined by the bundle structure of E, any
vector subspace HeM such that VeE ⊕HeE = TeE will qualify as a horizontal space.

Definition 7.5. An Ehresmann connection on the bundle π : E → M is a collection of
vector subspaces Γ = {HeE|e ∈ E} such that

• The map e→ He depends smoothly on e

• For each e ∈ E, we have TeE = HeE ⊕ VeE

We say that a vector field X ∈ Γ(TE) is horizontal if for every e, X(e) ∈ HeE. Horizontal
vectors will correspond to a notion of the vector being orthogonal to the fiber.
Trivial connection : if E = M × F , the trivial connection is HeE = TeM for every e
Flat at e if there’s a local trivialization such that the horizontal space is trivial at e.

7.3.1.1 Horizontal lifts

For a curve γ(λ), a lift of γ to E is a curve γ̃(λ) in the E bundle such that πE(γ̃) = γ(λ).
We say that γ̃ is a horizontal lift if the tangent vector of γ̃ is horizontal in E.

Theorem 7.6. For a bundle π : E → M with a connection Γ, and a curve γ(λ) such
that γ(0) = p. For each choice of lift of p to e, π(e) = p, there corresponds a unique
horizontal lift of γ to γ̃.

7.3.1.2 The connection form

7.3.1.3 Holonomy

Given an Ehresmann connection,
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7.3.2 Connection on a vector bundle

One of the most important Ehresmann connection is the Ehresmann connection on a
vector bundle, in particular the tangent bundle.

Definition 7.7. A connection on a C∞ vector bundle π : E →M is a map

∇ : X(M)× Γ(E) → Γ(E)

(X, s) 7→ ∇Xs (7.11)

such that

• The map is linear in X and s

• It obeys the Leibniz rule such that, for a function f ∈ C∞,

∇X(fs) = (X(f))s+ f∇Xs

or, alternatively,
∇X(fs) = df(X)s+ f∇Xs

Proposition 7.8. Every trivial C∞ vector bundle E = M × V admits a connection.

Proof. If E is a trivial vector bundle of rank r, there is a bundle isomorphism

φ : E →M × Rr (7.12)

Every vector bundle admits a connection. To prove this, we’ll need the following lemma
:

Lemma 7.1. Any finite linear combination of connections ∇i

∇ =
∑
i

ti∇i

such that ∑
i

ti = 1

is itself a connection.

Proof. Since it is simply a sum, the linearity is trivial. By the Leibniz rule, we have

∇i
X(fs) = (X(f))s+ f∇i

Xs (7.13)

So that

∇(fs) =
∑
i

ti(X(f))s+ f(
∑
i

ti∇i)s

= (X(f))s+ f∇s (7.14)

hence the connection obeys the Leibniz rule.

Theorem 7.9. Every C∞ vector bundle admits a connection.

Proof. Given a partition of unity {ρα} over a trivializing open cover Uα, the vector bundle
E|Uα
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7.3.3 Principal connection

For a principal G-bundle π : P →M and a point p ∈M , pick a point in the fiber ξ ∈ π−1.
The vertical subspace at p, Vp, is a subset of the tangent space at ξ of the principal bundle
itself, TξE, defined by

VξE = Tξ(Pπ(ξ)) (7.15)

The horizontal space Hξ is the complement such that TξP = VξP ⊕ HξP . The vertical
and horizontal bundle are the disjoint union of every vertical and horizontal space.
A vector field v on P is vertical if v(ξ) ∈ Vξ for every point ξ.
The vertical space is the image of the Lie algebra g of G under the G action. For ξ ∈ P ,
the action is

αξ : G → P

g 7→ ξg (7.16)

Pushforward at the identity gives a ap

σξ : g → TξP

A 7→ d

dt
(ξ exp(tA)) (7.17)

Since π(ξ exp(tA)) = π(ξ), σξ ∈ Vξ. Since G is free, map is bijective and hence σξ : g→ Vξ
is an isomorphism.
Take an element a of the Lie algebra g of the G-bundle P(M,G)

af(u) =
d

dt
f(ueta)|t=0 (7.18)

ueta is a curve in P entirely within Gp
A connection is a choice of the horizontal subspace Hξ such that (Rg)∗Hξ = Hξg

Definition 7.10. The connection one-form is a g-valued one-form ω on P defined by
ω(ξ) = a if ξ = σ(a) and ω(ξ) = 0 if ξ is horizontal.

The connection one-form defines the choice of Hξ

Theorem 7.11. The connection one-form obeys

φ∗h(ω) = Adg−1 ◦ ω (7.19)

Definition 7.12. A Koszul connection ∇ on a vector bundle π : E → M is a map
Γ(E)→ ΛkT ∗M ⊗ E obeying the Leibniz property

∀f ∈ C∞(M), s ∈ Γ(E),∇(fs) = df ⊗ s+ f∇s (7.20)

In particular, for a vector field X, ∇X : Γ(E)→ Γ(E)

∇fX(s) = f∇Xs

∇X+Y (s) = ∇X(s) +∇Y (s)

∇X(fs) = X(f)s+ f∇Xs (7.21)
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The covariant derivative associated with this principal bundle will be, for an n-form α

∇α = dα + ρ(ω) ∧ α (7.22)

Curvature form :

∇2α = ρ(Ω) ∧ α (7.23)

7.3.4 Soldering and connections

If we have an Ehresmann connection on the frame bundle FM , this will translate to a
connection on the tangent bundle TM

then any fiber bundle E equipped with a solder form θE will also be equipped with an
Ehresmann connection by the mapping

... (7.24)

Torsion :

Θ = ∇θ (7.25)

Θ an E-valued 2-form

θ = θiei (7.26)

Θ = dθi + ωij ∧ θj (7.27)

Difference of two connections :

C = ∇2 −∇1 (7.28)

Proposition 7.13. The difference between two Kozsul derivatives is a tensor.

Proof.

7.3.5 Gauge derivative

Ehresmann derivative of a principal bundle

Of particular use later on will be the Yang-Mills gauge derivative, defined by the principal
bundle over the groups SU(N) (or U(1) for N = 1)

Electromagnetism : fiber U(1), gauge derivative is

Dµ = ∂µ+ (7.29)

Gauge fixing : choice of a section of the principal bundle

Lorenz gauge

Gribov ambiguity
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7.4 The affine connection

The affine connection is the most general connection from the frame bundle FM .

∇µV
ν = ∂µV

ν + ΓναµV
α

∇µων = ∂µων − Γανµωα

Torsion tensor :

Sµν
λ = Γλ[µν] (7.30)

Non-metricity tensor :

Qλµν = −∇λgµν (7.31)

Theorem 7.14. The affine connection is uniquely determined by a choice of metric,
torsion and non-metricity tensor.

Proof.

The Riemann tensor is the curvature of this connection

7.5 The Levi-Civitta connection

The Levi-Civitta connection, also called the covariant derivative, is a type of Kozsul
connection with respect to the frame bundle π : FM → M , which as seen earlier has
structure group GL(n,R)
Restriction to the orthonormal frame bundle OM

Definition 7.15. The Levi-Civitta connection is a connection on the orthonormal frame
bundle that is :

• Torsion-free :
∇µ∇νf −∇ν∇µf = 0,∇XY −∇YX = [X, Y ]

• Metric :
∇g = 0

This will be the usual derivative that we will use in general relativity, as it can be used
to define most other derivatives and is also unique.
Fundamental theorem of Riemannian geometry :

Theorem 7.16. The Levi-Civitta connection is unique.

Proof. x

Components of the Levi Civita connection :

X(g(Y, Z)) + Y (g(Z,X))− Z(g(Y,X)) = g(∇XY +∇YX,Z)

+ g(∇XZ −∇ZX, Y )

+ g(∇YZ −∇ZY, Y )
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Koszul formula :

2g(∇VW,X) = V g(W,X) +Wg(X, V )−Xg(V,W )

− g(V, [W,X]) + g(W, [X, V ]) + g(X, [V,W ])

Definition 7.17. The Christoffel symbols of the Levi-Civitta connection for a chart
(U, φU) are the components defined by

∇∂µ∂ν = Γσµν∂σ (7.32)

Applied to the covariant derivative of a vector :

∇Y µ∂µX
ν∂ν = Y µ(∂µ(Xν)∂ν +Xν∇∂µ∂ν)

= Y µ(∂µ(Xν)∂ν +XνΓσµν∂σ)

To simplify things, we will denote the components of the covariant derivative of a vector
simply as

∇µX
ν = ∂µX

ν + ΓνµρX
ρ (7.33)

Coordinate transform of the Christoffel symbols
Applied to the Koszul formula :

2g(∇V ρ∂ρW
µ∂µ, X

ν∂ν) = V ρW µXνg(W,X) +Wg(X, V )−Xg(V,W )

− g(V, [W,X]) + g(W, [X, V ]) + g(X, [V,W ])

Γσµν =
1

2
gσρ(∂νgµρ + ∂µgνρ − ∂ρgµν) (7.34)

Application to dual vector fields and tensor fields :

∇µXν = ∂µXν − ΓρµνXρ (7.35)

7.5.1 Parallel transport

With the connection, we can now compare two vectors inhabiting different tangent spaces.
Parallel transport of a vector V along a curve of tangent u

∇uV = 0 (7.36)

uµ∇µV
ν = 0 (7.37)

Define the derivative : for a curve γ with tangent u,

dxµ

dλ
(λ)(

∂

∂xµ
V ν + ΓνµρV

ρ) (7.38)

If we consider the restriction V ν(xµ(λ)), by the chain rule,

d

dλ
V ν(xµ(λ)) =

dxµ

dλ

∂V ν

∂xµ
(xµ(λ)) (7.39)
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7.5.2 The geodesic equation

A geodesic will be a curve with a tangent vector that is parallely transported with respect
to itself. That is,

∇UU = 0 (7.40)

or, in a coordinate representation,

∇UU = Uµ∇µU
ν = Uµ∂µU

ν + UµΓνµρU
ρ = 0 (7.41)

This will correspond, using the coordinate representation of the curve xµ(λ), to

d2xν

dλ2
+ Γνµρ

dxρ

dλ

dxµ

dλ
= 0 (7.42)

We say that a curve is a pre-geodesic if there exists a function f : I → R such that

∇UU = fU (7.43)

Reparametrization : for λ→ aλ, γ(aλ) with initial uµ equivalent to γ(λ) with initial auµ

7.5.3 Other differential operators

The previously seen differential operators can be defined by the Levi-Civitta connection.

dω = ∇[αωµνρ...] (7.44)

LXY = (7.45)

We also define a few useful variations on the Levi-Civitta connection

The divergence will be defined by

∇µT
µ = ∂µT

µ + ΓµµνT
ν (7.46)

We define

Γν = Γµµν (7.47)

Curl :

(curl(T ))µ = εµνρ∇νT ρ (7.48)

Laplace-Beltrami operator on a p-form ω

�ω =
1√
−g

∂ν(
√
−ggµν∂µω) (7.49)
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7.5.4 Curvature

Riemann curvature tensor

ω(Riem(X, Y )) = ∇X∇Y ω −∇Y∇Xω −∇[X,Y ]ω (7.50)

[∇µ,∇ν ]Aσ = ∇µ∇νAσ −∇ν∇µAσ = Rµνσ
τAτ (7.51)

Corresponds to parallel transport around an infinitesimal loop

Rµνσ
τAτ = ∇µ(∂νAσ − ΓτνσAτ )−∇ν(∂µAσ − Γτµσ)

= ∂µ∂νAσ − Γτµσ∂νAτ − Γτµν∂τAσ

− ∂µΓτνσAτ − ...
− ∇ν∂µAσ

− ∇νΓ
τ
µσ

Rµνσ
τ = ∂νΓ

τ
µσ − ∂µΓτ νσ + ΓαµσΓτ αν − ΓανσΓτ αµ (7.52)

Symmetries of the Riemann tensor

Rµνσ
τ = Rµνσ

τ (7.53)

Number of components of the Riemann tensor
In coordinate form, the Riemann tensor has at most n4 components, from its 4 indices,
but thanks to its symmetries, that number can be reduced.

Cn(Riem) =
n2(n2 − 1)

12
(7.54)

Ricci tensor

Rµν = Rµσν
σ (7.55)

Ricci scalar

R = Rµνg
µν (7.56)

Bianchi identity

∇[ρRµν]σρ
τ = ∇ρRµνσρ

τ +∇νRρµσρ
τ +∇µRνρσρ

τ = 0 (7.57)

Einstein tensor

Gµν = Rµν +
1

2
gµνR (7.58)

Gµν = Rµν −
1

2
gµνR (7.59)

∇µG
µν = ∇µR

µν − 1

2
gµν∇µR (7.60)
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Decomposition of the Riemann tensor

Rµνρσ = Cµνρσ + Eµνρσ +Gµνρσ (7.61)

with Cµνρσ the Weyl tensor

Cµνρσ = Rµνρσ +
1

3
Rgµ[ρgσ]ν − gµ[ρRσ]ν + gν[ρRσ]µ (7.62)

Eµνρσ = (7.63)

Gµνρσ =
1

12
R(gµρgνσ − gµσgνρ) (7.64)

7.6 Torsion and non-metricity

It is possible to define a spacetime with non-zero torsion, leading to the Einstein-Cartan
theory of relativity. For a general Koszul connection, the derivative is defined by three
quantities : the metric tensor, the torsion tensor and the non-metricity tensor.

∇µ∇νf −∇ν∇µf = −T σµν∇σf (7.65)

where T is the torsion tensor.

∇Xg(Y, Z) = N(X, Y, Z) + ... (7.66)

∇σgµν = Nσµν (7.67)

Proposition 7.18. Any Koszul connection can be decomposed in term of three tensors,
the metric tensor, the torsion tensor and the non-metricity tensor.

Proof. If we have two Koszul connections ∇, ∇̄, we need to show that given those three
tensors, (∇− ∇̄)T = 0 for all tensors T .

(∇− ∇̄)gX(Y, Z) (7.68)

Γσµν =
1

2
gστ [∂µgτν + ∂νgτµ − ∂τgµν − Tµντ − Tνµτ + Tτµν ] (7.69)

{µσν} =
1

2
gστ [∂µgτν + ∂νgτµ − ∂τgµν ] (7.70)

Kσ
µν =

1

2
gστ [−Tµντ − Tνµτ + Tτµν ] (7.71)

K the contortion tensor.
We have that

Γσ(µν) = {µσν} (7.72)
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Meaning that, for the geodesic equation, we still have

duσ

dλ
(λ) + {µσν}uµ(λ)uν(λ) (7.73)

due to the symmetry of µ and ν. This means that geodesics are not affected by torsion,
and as such are of limited interest for the scope of this book.

7.7 Spin connection

A similar definition of the covariant derivative exists if, rather than the metric tensor, we
use the frame field.

∇Xej = ωij(X)ei (7.74)

∇ekej = Γikjei = ωij(ek)ei (7.75)

Ricci rotation coefficients :

ωσµν = eσ
aeµ

b∇aeνb (7.76)

Cartan structure equations

Θi = dθi + ωij ∧ θj (7.77)

Ωi
j = dωij + ωik ∧ ωkj (7.78)

Connection is metric if

ωik + ωki = 〈ei, ek〉 (7.79)

7.8 The exponential map and normal coordinates

The existence of a connection lets us define a natural set of coordinates stemming from
the natural coordinates of the tangent space, as the tangent space itself is simply Rn. To
accomplish this, we have to map vectors from the tangent space TpM to nearby points
of p with geodesics.
Since there’s no guarantee that any two points can be connected by a geodesic (and
indeed it will not always be possible), we first have to define the maximal extension of
such a scheme.

Definition 7.19. Dp is the set of vectors v in TpM such that the inextendible geodesic
γ(0) = p with tangent vector γ̇(p) = v is defined on the interval [0, 1].

We only require it to be defined on [0, 1] since a reparametrization can show that if it is
defined for γ(λ), λ > 1, it will be equivalent to the curve of initial tangent vector λv at
γ(1).

Theorem 7.20. Dp is an open set in TpM , starshaped around 0.

Proof.
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Definition 7.21. The exponential map at p is the function

expp : Dp →M

such that for v ∈ Dp, expp(v) = γv(1)

Geodesic equation :

dxµ

dλ
= uµ (7.80)

duµ

dλ
= −Γµσρu

ρuσ (7.81)

By Picard–Lindelöf theorem [REQUIRES THE METRIC TO BE AT LEAST C1,1], lo-
cally unique and existing solution for initial conditions x(0) = x0 and u(0) = u0 on the
interval [−ε, ε] for some ε > 0

Theorem 7.22. A straight line parametrized by xµ(λ) = aµλ in the tangent space, such
that xµ(λ) ∈ Dp for the whole range of λ will map to a geodesic on the manifold.

Proof. Consider the curve mapped by expp(λa
µ) = γ(λ). Its tangent vector will be

γ′(λ) =
d

dλ
(expp(λa

µ)) = λ exp′p(λa
µ) (7.82)

7.9 Convex normal neighbourhood

Definition 7.23. An open set U is convex in M if it is a normal neighbourhood of each
of its points p ∈ U .

For every point p, q ∈ U there exists a unique geodesic
Inverse function theorem : exp continuously differentiable in an open set containing
p, det exp′ 6= 0, then ∃V, p ∈ V, ∃W, exp(p) ∈ W such that f−1 : W → V which is
differentiable and ∀y ∈ W

(f−1)′(y) = [f ′(f−1(y))]−1

Convex normal neighbourhood : For p ∈ M, the open set U is a convex normal neigh-
bourhood of p if p ∈ U , and ∀q, r ∈ U , there is a unique geodesic connecting q and r that
stays entirely in U .
If U is a convex normal neighbourhood of p, the points that can be reached by a timelike
(respectively causal) curve are the ones of the form expq(X)

Theorem 7.24. For a manifold M , if p ∈M , there exists a convex normal neighbourhood
of p.

Proof. Picking a normal coordinate system xi around p, xi(p) = 0 and Γµνσ(p) = 0.

In a convex normal neighbourhood, the parallel transport of a tensor is a bitensor.

γ : TpM → TqM (7.83)
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Theorem 7.25. In a convex normal neighbourhood around p, the points that can be
reached by p through a timelike (non-spacelike) curves are of the form expp(X), X ∈ TpM,
with g(X,X) < 0 (resp. g(X,X) ≤ 0)

Proof. x

The Gauss lemma

Theorem 7.26. For a point p ∈ M , and a vector X ∈ TpM , X 6= 0, if we have two
vectors vX , wX of the tangent space TX(TpM) with vX radial, then

g(d expp(vX), d expp(wX)) = g(vX , wX) (7.84)

Proof. x

Definition 7.27. A simple region is a convex normal neighbourhood with compact clo-
sure in M that is itself contained in another convex normal neighbourhood.

The tangent space has the natural structure of flat space : an n-dimensional vector space
equipped with a symmetric bilinear form 〈−,−〉 such that in some basis eµ,

〈x, y〉 = −
p∑

µ=0

(xµ − yµ)2 +

q∑
µ=p+1

(xµ − yµ)2 (7.85)

Because of this, we may identify the tangent space of any manifold with the flat space
(Rn, η) of the same dimension and signature. In particular,

Theorem 7.28. There’s a natural isomorphism between Minkowski space and its tangent
space.

Proof. ω ∈ V ∗. We can view it as a function ω : V → R. We seek an isomorphism
φv : TvV → V such that ω(φv(w)) = dω(w) for each w ∈ TvV and ω ∈ V ∗. Pick a
basis {θi} of V ∗ and a basis {ej} of TvV . (φv)

j
i = dθi(ej) is such an isomorphism. For

uniqueness : if ψv is another, ω((φv − ψv)w) = 0 for all ω ∈ V ∗, w ∈ TvV . It is obvious
that this implies φv − ψv = 0. We can turn the Lorentzian vector space (V, 〈·, ·〉) into a
Lorentzian manifold (V, g) if we define gv(w, z) = 〈φvw, φvz〉.

7.9.1 The diffeomorphism group

As seen previously, the set Diff(M) of all diffeomorphisms on the manifold forms a group.
Diffeomorphisms on a convex normal neighbourhood
Lie brackets

7.10 Observers and appropriate coordinates

7.11 Frame fields and observers

A curve with an associated frame field along it can be used to represent an observer on
spacetime, the curve γ representing the trajectory of this observer through spacetime and
the frame field along that curve eaµ(x(λ)) being a system of coordinates defined by the
observer. For a physical observer, we will assume that the curve is timelike.
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If we take any frame field associated to the metric and an arbitrary curve,
Rotation of a frame on a curve : if the tangent vector u = uae

a, the rotation of the frame
will be

duµ

dt
= −Ωµνuν = ()vb (7.86)

∇uea = −Ω · ea (7.87)

Ωµν = aµaν − uµaν + uαωβε
αβµν (7.88)

a = ∇uu (7.89)

g(a, u) = g(ω, u) = 0 (7.90)

ω = 0 : Fermi-walker transport of the frame a = ω = 0 : Geodesic motion

7.11.1 Fermi coordinates

Coordinates locally flat around a geodesic γ
For all p ∈ γ(S), there exists a coordinate patch around p such that

gµν(p) = ηµν(p), ∂ρgµν(p) = 0 (7.91)

and the components of the curve on that patch are

xµ = (t, 0, 0, ...) (7.92)

7.11.2 Riemann normal coordinates

The simplest adapted coordinates are simply the coordinates associated with a Cauchy
normal neighbourhood via the exponential map
Coordinates defined to be locally flat at a point p

gµν(p) = ηµν(p), ∂ρgµν(p) = 0 (7.93)

7.11.3 Frenet coordinates

Coordinates along an arbitrary curve γ(λ) with tangent u(λ) and rotation ω(λ). The
orthonormal frame associated to the observer obeys

dea
dλ

= −Ωea (7.94)

Ωµν = aµuν − aνuµ + uρωβε
ρσµν (7.95)

aµ(λ) = ∇uu
µ (7.96)
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7.12 Properties of curves and geodesics

Theorem 7.29. The length of a curve looks locally like it does in flat spacetime.

Proof. For the curve γ starting at p and ending at q, consider the point p′ along that
curve that lies within the normal neighbourhood. In the normal coordinates of p,

xµ(p) = 0, gµν(x) = δµν +O(|x2|) (7.97)

where δ is the metric of flat space of appropriate signature. We can Taylor expand the
coordinates of the curves as

xµ(λ) = xµ(0) + tuµ +O(λ2) (7.98)

with tangent uµ +O(λ). The length of that curve is then

sγ =

∫ p′

p

[δµνu
µ(λ)uν(λ) +O(|x2|)]

1
2dλ (7.99)

Theorem 7.30. In a Riemannian manifold, the shortest path between two points is a
geodesic.

Proof.

Properties of geodesics as minimal curves for Lorentz metric
It can be useful to define a more general definition of causal curves.

Definition 7.31. A C0 curve γ is causal (resp. timelike) if, for all p ∈ γ, there is a
convex neighbourhood U 3 p such that for any q 6= p, q ∈ γ ∩U , we can connect p and q
by a C1 causal (resp. timelike) curve contained in U .

Proposition 7.32. For a point p ∈ M, there is a convex coordinate neighbourhood
U 3 p with coordinates xµ such that for any causal curve γ ⊂ U , γ can be parametrized
by x0 and for k > 0, we have

[
∑
µ

(xµ(t)− xµ(s))2]
1
2 ≤ k|t− s| (7.100)

for all t, s ∈ I.

Proof. (cf Kriele)

7.13 The geodetic interval

The geodetic interval, also called the world function, assigns a positive semi-definite
length to geodesics connecting two points. That is, for a geodesic γ connecting p and q,
consider the quantity sγ defined by

• γ timelike :
sγ(p, q) = −lγ
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• γ null :

sγ(p, q) = 0

• γ spacelike :

sγ(p, q) = lγ

The geodetic interval is then defined by

σγ(p, q) = ±1

2
[sγ(p, q)]

2

=
1

2
(λq − λp)

∫ λq

λp

g(u(λ), u(λ))dλ (7.101)

If geodesics between p and q are unique, it can be considered as a bitensor field of rank
(0, 0).
Value independant of the parametrization
g(u(λ), u(λ)) is constant along γ so we can write

σγ(p, q) =
1

2
(λq − λp)2g(γ′(λ), γ′(λ)) (7.102)

If parametrized so that γ(0) = p, γ(1) = q,

Ωγ(p, q) =
1

2
g(γ′(λ), γ′(λ)) (7.103)

Ωγ(p, q) =
1

2
ε(

∫ q

p

ds)2 (7.104)

ε = ±1, 0 if the curve is spacelike, timelike or null.
For γ a geodesic, we define the geodetic distance as the world function on γ normalized,
that is, for a timelike geodesic,

sγ(p, q) =

∫ q

p

dτ (7.105)

for a spacelike geodesic

sγ(p, q) =

∫ q

p

ds (7.106)

and of course, for a null curve, geodesic or not, we always have sγ(p, q) = 0.
Unlike Riemannian manifolds, the minimal
If the geodesic isn’t timelike,

∇x
µσγ(x, y) = ±sγ(x, y)∇x

µsγ(x, y) (7.107)

We define the unit tangent vector of our geodesic from y to x by

tµ(x, γ, x← y) = ±gµν∇x
νsγ(x, y) (7.108)

∇x
µσγ(x, y) = sγ(x, y)tµ(x, γ, x← y) (7.109)
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If the geodesic is null, sγ(x, y) = 0, so that if we use the previous expression, it will be 0.
The covariant derivative in this case will be proportional to some null vector k

∇x
µσγ(x, y) = ζγ(x, y)kµ(x, γ, x← y) (7.110)

We then have to introduce a canonical observer by a timelike vector ξµ at x that we will
parallel transport

(gµν∇µσγ)∇νξ
ρ = 0 (7.111)

Or, in other words,

lµ(x, γ, x← y)∇νξ
ρ = 0 (7.112)

If we define it to be of the same time orientation as l,

lµ(x, γ, x← y)ξµ = −1 (7.113)

ζγ(x, y) = −V µ∇x
µσγ(x, y) (7.114)

ζγ : distance along the null geodesic as measured by the canonical observer.
We also define m = 2ξ − l

mµξ
µ = −1

lµm
µ = −2

∇x
µζγ(x, y) = −1

2
lµ(x, γ, x← y) (7.115)

Ex from Visser : prove ζ is a parametrization of γ, show l∇l = 0, hint : l∇l = fl,
l∇ξ = 0, lξ = −1, compute f , show l∇m = 0 show l∇ζ = 0, m∇ζ = 0

7.13.1 The van Vleck determinant

∆γ(x, y) = (−1)n
det(∇x

µ∇y
νσγ(x, y))√

g(x)g(y)
(7.116)

Motivation : In the case where geodesics between two points are unique, there are two
ways to specify a geodesic : by either specifying an initial point p and tangent vector u, or
by specifying two points p and q. The Jacobian associated with this change of variables
is

Jγ(x, y) =
1√

g(x)g(y)
det(

∂(x, u)

∂(x, y)
) (7.117)

=
1√

g(x)g(y)
det(

∂u

∂y
) (7.118)
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8 Spacetime submanifolds

We briefly saw earlier what a submanifold is, and we will now see in more details the
various kinds of submanifolds one can find as well as what happens to the manifold
structures on them.
All submanifolds are defined in the same manner : a manifold N is a submanifold of the
manifold M if there exists a map f : N → M . The subset f(N) ⊂ M is then called the
submanifold. The map f is not generally required to be injective, as will be seen with
some examples.

8.1 Immersions, submersions and embeddings

Definition 8.1. A smooth map f : M → N is an immersion if df(p) is a bijection for
all p ∈M .

Equivalent : Jacobian dφp has rank m relative to some coordinate system, a coordinate
system {yµ} of N there are integers such that {yi(ν)}1≤ν≤n is a coordinate system on a
neighbourhood p ∈M .
Examples : regular curves (γ′ 6= 0) are immersions.

Definition 8.2. An embedding of a manifold P in M is an immersion φ : P → M such
that φ is a homeomorphism.

The submanifold topology is the same as the subspace topology
Example : embedding of (a1, a2, ...am)→ (a1, a2, ...am, 0, 0, ...)

Definition 8.3. A smooth map f : M → N is a submersion if

Immersion, submersion, embedding, submanifold
Injection maps ι : M ↪→M ′, diffeomorphic on ι−1(M ′)

Definition 8.4. A subset N is a k-dimensional submanifold of M , k ≤ n, if there is an
atlas of N {(Uα, φα)} such that for all α where Uα ∩N 6= 0 ,

Immersion, embedding
Example of manifold from submanifolds : The n-sphere Sn as a submanifold of Rn+1

Whitney embedding theorem :

Theorem 8.5. Any smooth, Hausdorff and second-countable manifold of dimension n
can be smoothly embedded in R2n.

8.2 Induced structures on submanifolds

If we consider the submanifold M of a manifold M ′, with inclusion map ι : M ↪→M ′

A vector field X on M passed through the inclusion map is a M ′ vector field on M .
Tangent space TpM is a non-degenerate subspace of TpM

′

TpM
′ = TpM ⊕ TpM⊥ (8.1)

Vectors of TpM
⊥ are called normal vectors to M

Induced connection :
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Induced metric
timelike, spacelike and null submanifolds
Gauss-Codazzi equation

8.3 Hypersurfaces

A hypersurface is an (n− 1) dimensional submanifold. For an (n− 1)-manifold Σ and an
embedding θ : Σ→M , then we say that θ(Σ) is a hypersurface in M .
induced metric θ∗g on Σ where X, Y ∈ TpM , θ∗g(X, Y )|p = g(θ∗X, θ∗Y )|θ(p)

Theorem 8.6. The intersection of an n-dimensional timelike submanifold and a spacelike
hypersurface is an n− 1 spacelike submanifold.

8.3.1 Hyperquadrics

In the flat manifold Rn :
Take the function q in Rp+q

q = −
p∑
i=1

(xi)2 +
n+1∑
i=p+1

(xi)2 (8.2)

q(x) = 〈x, x〉, hence grad q = 2x

〈grad q,X〉 = X(q) = X〈x, x〉 = 2〉DXx, x〉 = 2〈X, x〉 (8.3)

8.4 Foliations

Definition 8.7. A foliation of a manifold M is the decomposition of M into a disjoint
union of connected subsets Lα, called leaves, such that they cover the manifold

M =
⋃
α

Lα (8.4)

and there is an atlas (Uβ, φβ) such that the intersection of a leaf Lα wuth Uβ

Foliations of interest in GR : foliation by spacelike hypersurfaces, foliations by timelike
curves.
Froebinius theorem
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9 Singularities

Singularities play an important role in the study of spacetime, as they are a common
feature of many realistic spacetimes, so it may be of interest to have the proper definitions
and classification for them.

On flat spacetime, field singularities are generally defined by divergences in quantities
at defined points. For instance, the singularity of the electric field of a static charge in
electromagnetism

~E(~x) = ke
q

r2
~er (9.1)

which presents a singularity at r = 0, as the field is unbounded around this value. One
might think that the definition of a singularity in general relativity is similar (as it usually
appear in similar forms in such famous examples such as the Schwarzchild metric), but
unlike classical physics, singularities in general relativity are not trivial to define due to
a few obstacles :

• Points can be (and for singularities, are) removed from the manifold, in which case
if a quantity diverges at p on M, we need to define what this means on M\ {p}.

• For tensor components, the values of a field depend on the atlas we use, and this
can lead to divergences in one coordinate system but not in another, such as the
horizon in the Schwarzschild metric.

• For some choice of coordinates, a divergence at a given coordinate can correspond
to a quantity which is ”at infinity”, and as such not really problematic.

9.1 Regular boundary points

The simplest singularities arise when a well-behaved point is removed from a manifold.
While they may appear as singularities in all the following definitions, unlike other more
pathological singularities, they do not necessarily form a boundary of the manifold. For
instance, for the Minkowski half-space {(t, x)|t > 0}, there is a singularity formed by
(t, x)|t = 0, but it is possible to extend (in a non-unique way) the spacetime.

To differentiate regular boundary points from more pathological ones, we first try to
extend the spacetime in a way that remove them.

Definition 9.1. An extensionM′ of a spacetime is a spacetimeM′ such that there exists
an isometric embedding µ :M→M′.

Definition 9.2. A boundary point is a regular boundary point if there exists an extension
of the spacetime such that the boundary point is not present in the extension.

Such singularities, while often used for examples, are often considered unlikely to be
physical.
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9.2 m-completeness and g-completeness

If a manifold is equipped with a Riemannian metric, we can define the notion of com-
pleteness of the manifold by its status as a metric space. We then say that the manifold
is m-complete if every Cauchy sequence converges to a point in the manifold, where the
norm of the Cauchy sequence is the metric d defined by the Riemann tensor. That is, for
a sequence pn of points of the manifold

∃p ∈M, ∀ε, ∃N, ∀n > N, (9.2)

Unfortunately, Lorentzian metrics do not permit the definition of a metric on the mani-
fold.

g-complete : Every inextendible half-geodesic is defined for arbitrarily large values of its
affine parameter.

The definition is limited to geodesics due to the fact that any spacetime may admit curves
of finite affine length by a proper choice of the parametrization

Theorem 9.3. Even benign spacetimes may admit half-curves of finite affine length.

Proof. Consider a curve in Minkowski space with unbounded acceleration in finite time

ẍµ(λ) = (0, tan(λ)) (9.3)

That curve is both inextendible and of finite affine length.

This corresponds to a curve of unbounded acceleration.

Unfortunately, the notion of g-completeness is not sufficient to fully capture the concept
of singularities.

Theorem 9.4. There exists geodesically incomplete compact spacetimes.

Proof. cf Misner 63, O’neill p. 193

The notion of g-boundary gives rise to three classes of singularities, depending on the
type of curve considered. These are naturally timelike singularities, spacelike singularity
and null singularity. Spacetimes with those types of singularities are qualified as timelike
incomplete, spacelike incomplete or null incomplete, or gt, gs and gn incomplete.

Unfortunately, there is no obvious relation between those types of incompleteness, as it
can be shown that they can all occur independently of each other.

9.2.0.1 Spacetime which is spacelike and null complete but timelike
incomplete

2D Conformal Minkowski space g = Ωη, Ω = 1 if |x| > 1, conformal factor is space
reflection symmetric : Ω(x, t) = Ω(−x, t), Ω decays fast as t→∞ (for instance t6). This
conformal factor could be built easily enough with bump functions.

Geodesic on t = 0 is timelike and finite length. Every spacelike or null geodesic will leave
the region (−1, 1) and hence be complete.
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9.2.0.2 Spacetime which is spacelike complete but timelike and null
incomplete

Metric due to Kundt

ds2 = −f−2(x)dt2 − dx2 (9.4)

for x ∈ (0,∞), t ∈ R
Geodesics :

s− s0 =

∫
(f 2(x) + ε)−

1
2dx (9.5)

ε being −1 for timelike geodesics, 1 for spacelike geodesics and 0 for null geodesics.

for f(x) = x

9.2.0.3 Spacetime which is timelike complete but null and spacelike
incomplete

[cf Kundt]

9.2.0.4 Spacetime which is timelike, spacelike and null incomplete

9.2.0.5 Spacetime which is timelike and null complete but spacelike
incomplete

9.2.0.6 Spacetime which is spacelike and timelike complete but null
incomplete

9.2.0.7 Spacetimes which are complete for all geodesics but not for timelike
curves of bounded acceleration

Example of a spacetime which is geodesically complete but with non-terminating timelike
curves

Covering space of two-dimensional anti de Sitter space

ds2 = −(1 + x2)dt2 + (1 + x2)−1dx2 (9.6)

Construct a spacetime with ”geodesic traps” ended by a singularity

Blocking sets

9.2.1 Naked singularities

A particularly important class of singularities in general relativity is the naked singularity

Definition 9.5. A spacetime is nakedly singular if there is a point p ∈M and a future-
incomplete timelike or null geodesic γ such that γ ⊂ I−(p)

(definition extended to causal curves of bounded accelerations maybe)

By this definition, it is easy to see that a spacetime that is both timelike and null complete
is never nakedly singular, and so spacetimes that are only
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9.3 b-completeness

The notion of completeness that fulfills best the broadest notion of singularity is b-
completeness, or bundle completeness, where we define a Riemannian metric on the
bundle of linear frames LM
An inextendible curve in M defines a point of the b-boundary ∂M if and only if its
euclidian length measured in a parallelly propagated frame is finite.

gb(X, Y ) =
∑
i

θi(X)θi(Y ) +
∑
i,j

ωik(X)ωik(Y ) (9.7)

b-boundary : Completion of the orthonormal bundle π : O → M with the metric e on
the bundle. The b-boundary

9.4 Classification of singularities

The b-boundary gives us the boundary points ∂M of the spacetime. These singularities
can then be classified by the behaviour of the Riemann tensor near them.

First, as we have defined previously, singularities in ∂M which are actual points of a
manifoldM′, where M′ is an extension ofM, are called regular boundary points. If for
one of those extensionsM′, the Riemann tensor is a Ck tensor, and k is the highest value
of any of those extensions, we say that it is a Ck regular boundary point. If there is no
extension where the Riemann tensor is Ck, we say that this point is a Ck singular point.

If the metric is itself not smooth, the Riemann tensor might be itself Ck itself at some
points, even discontinuous or worse (if we allow for weak derivatives). Although not part
of the b-boundary, this will be of a similar behaviour to Ck regular boundary points. We
may then get points as badly behaved as C0 regular boundary points, for instance in the
thin shell formalism or with gravitational shockwaves.

(manifold + b-boundary is a topological space)

9.4.1 Regular boundary points

As we saw previously, some boundary points are simply the result of spacetime not being
fully extended.

Theorem 9.6. If a spacetime admits an extension, it contains regular boundary points.

Proof. Consider a spacetimeM with an injection map ι : M ↪→M ′ into an extension M ′

such that Im ι ⊂ M ′. The image of the inclusion will then have a non-empty boundary
∂M . As they are part of the manifold M′, there exists Cauchy sequences (ei)i∈N in the
bundle of linear frame LM′, ei ∈ LM for all i, such that

π( lim
i→∞

ei) ∈ ∂ Im ι (9.8)

As M does not contain any point in ∂M , those sequences of LM ′|M do not converge in
the bundle itself and are boundary points.
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9.4.2 Quasi-regular singularities

A boundary point p ∈ ∂M is a quasi-regular Quasiregular singularities if it is not possible
but the Riemann tensor can be extended in a parallel frame

Definition 9.7. A singular boundary point b is called a quasi-regular singularity if, for
every curve γ that ends on the boundary point, the frame field {ea} and all its derivatives
on those curves remains bounded.

Local extensibility
Example : conical singularity
Take Minkowski space, express in cylindrical coordinates

ds2 = −dt2 + dρ+ ρdθ2 + dz2 (9.9)

remove the timelike plane {(t, ρ, θ, z)|ρ = 0}
Effects of quasi-regular singularities : affects the parallel transport of curves

9.4.3 Curvature singularity

Curvature singularity : Riemann tensor cannot be extended in a parallel frame

Definition 9.8. A boundary point b is called a curvature singularity if, for every curve
γ that ends on the boundary point, the frame field {ea} or one of its derivatives on those
curves is unbounded.

The curvature singularity is the most common example of singularity. It is for instance
the type we may find in the interior Schwarzschild solution r < 2M

ds2 = −(1− 2M

r
)dt2 + (1− 2M

r
)−1dr2 + r2(dθ2 + sin2(θ)dϕ2)

Non-scalar singularity : no curvature scalar is badly behaved
Scalar singularity : badly behaved curvature scalar
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10 Distributions on manifolds

For many applications, such as classical field theory, point particle sources, quantum field
theory or singular spacetimes, it will be useful to define distributions of various types on
the spacetime manifold.

10.1 Schwartz distributions

The simplest class of distributions are the Schwartz distributions, simply defined with
respect to scalar test functions, or just simply test functions.

Definition 10.1. A test function f is a smooth function of compact support on M , that
is, f ∈ C∞(M), supp f ⊂⊂M .

As we’ve seen with bump functions, such functions do exist on any Hausdorff manifold.
The set of all test functions on M is noted D(M). From this we can define Schwartz
distributions as

Definition 10.2. A distribution is a linear functional on the space of test functions

Φ : D(M)→ R (10.1)

which means that, for Φ ∈ D ′(M) and f, g ∈ D(M), we have the property

Φ[af + bg] = aΦ[f ] + bΦ[g] (10.2)

Embedding of L1 functions : If a function Φ ∈ L1(D), then there is an embedding of that
function in D ′(D), as

Φ(f) =

∫
D

Φfdµ[g] (10.3)

Definition 10.3. The delta distribution is the class of distribution defined by a point
p ∈M such that δp[f ] = f(p).

Definition 10.4. The singular support of a distribution sing supp(φ) is a subset of the
manifold such that p /∈ sing supp(φ) if there exists a neighbourhood U 3 p such that we
can define a smooth function φ(p) ∈ C∞(U) such that, for any test function with support
in U , we have

φ[f ] =

∫
φ(x)f(x)dµ[g] (10.4)

The singular support expresses at which point a distribution fails to behave like a smooth
function.
Example : sing supp(δ) = {0}

Theorem 10.5. A distribution with an empty singular support is equivalent to a smooth
function.

Proof.

Derivatives of distributions :

φ′[f ] = −φ[f ′] (10.5)
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Proposition 10.6. The weak derivative of a distribution is equivalent to the standard
definition of derivatives for smooth functions.

Proof. By integration by parts, we have

φ′[f ] =

∫
D

φ′(x)f(x)dµ[g] =

∫
∂D

φ(x)f(x)−
∫
D

φ(x)f(x)dµ[g] (10.6)

10.1.1 Distributions as sequences of test functions

Another definition of distributions is to consider the space of sequences of smooth func-
tions {φn(x)} ∈ N× C∞(M) such that, for a test function f ,

lim
n→∞

∫
φn(x)f(x)dµ[g] ∈ R (10.7)

If the limit exists, the sequence is said to converges weakly. A distribution is then defined
as the equivalence class of sequences converging to the same values for the same test
functions.

Proposition 10.7. The set of weakly converging function sequences is equivalent to the
set of distributions.

Delta distribution as sequence of smooth functions : for any coordinate chart centered
on p with x(p) = 0, we have

δp = {εφn(
x

ε
)}n (10.8)

10.1.2 Product of distributions

Theorem 10.8. There is no differential algebra of distributions that includes the unit
function and obeys the usual multiplication on smooth functions.

Proof. Cf. Schwartz’s paper, with the distribution 1/x as a counterexample

Possible products :
Product with smooth functions C∞(M)×D ′(M)→ D ′(M)
products of two distributions with disjoint singular supports

10.1.3 The wavefront set

Distribution products using the Fourier transform :

f̂ 2w(k) = (f̂u ? f̂v)(k) = (10.9)

absolutely convergent
Wavefront set : Set on the cotangent bundle T ∗M \M ×{0} defined by the fast decrease
of the Fourier transform on an open cone around (x, k)
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10.2 Schwartz functions and tempered distributions

In Rn, the space of Schwartz functions is the set of all fast decreasing functions, which
are functions where the n-th derivative decays faster with distance than a polynomial.

S (Rn) = {f ∈ C∞(M)|∀α, β ∈ Nn, sup
x∈Rn
|xα∂βf | <∞} (10.10)

where α and β are multi-indices, that is

xα =
n∏
i=1

xαii (10.11)

∂β = ∂β1

1 ∂
β2

2 ...∂
βn
n (10.12)

For manifolds, we will require that, if there exists a boundary, the derivatives of the
function mapped to the conformal compactification of the spacetime vanish on it.

S (M) = {f ∈ C∞(M)|∀α ∈ Nn,∇αf(I ) = 0} (10.13)

Tempered distributions : S ′, space of linear functionals f : S → R

10.3 Tensor distributions

Distributions can be defined on tensors in a similar way, by first defining tensor test
functions.

Definition 10.9. A test field t on an orientable manifold M is a smooth tensor density
of weight −1 with compact support.

The set of test fields from tensors of rank (r, s) will be noted T r
s (M).

Definition 10.10. A distributional tensor is a linear functional on T r
s (M), noted T ′r

s (M).

As with distributions on scalar fields, there exists a mapping from tensor fields to distri-
butions : given a tensor T of rank (r, s), we can define a distribution from it with the
action

T [t] =

∫
Tµν...

αβ...tµν...αβ... (10.14)

where t is a test field of rank (s, r). Hence the map is from T rs to T s
r . This integral is

always well defined since mathfrakt is of compact support.

Definition 10.11. The contraction of a tensor distribution is defined [in coordinates] as

T abc...p...a′b′c′...p...[t
a′b′c′...

abc...] = T abc...p...a′b′c′...p′...[t
a′b′c′...

abc...δ
p′
p] (10.15)

Similarly to scalar field distributions, we can define derivatives on tensor distributions.

Definition 10.12. For any derivative operator Dµ on tensor fields, we define the deriva-
tive of a tensor distribution by

DµT
abc...p...

a′b′c′...p...[t
a′b′c′...

abc...] = −T abc...p...a′b′c′...p...[Dµt
a′b′c′...

abc...] (10.16)
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10.3.1 The Geroch-Traschen class of metrics

The Geroch-Traschen class of metrics (or gt-regular metrics) are metric tensor fields (not
purely distributions) with well-defined curvatures as distributions.

• The inverse of g exists everywhere and the metric and its inverse are locally bounded.

• The first weak derivative of the metric exists and is locally square-integrable.

Theorem 10.13. For a d-dimensional submanifold S of the n-dimensional spacetimeM,
let α ∈ T ′r

s be a non-zero distribution with support in S and is a sum of a distribution
from a locally integrable tensor field and the derivative of a distribution from a locally
square-integrable field, that is, for a test field τ ∈ T r

s ,

α[t] =

∫
M
µt + β∇t (10.17)

where µ ∈ T sr is locally integrable and β ∈ T s+1
r is locally square-integrable. Then

d = n− 1.

Proof. We define a Riemannian metric g+ on M and pick some ε > 0 for a neighbourhood
Uε composed of open balls of radius ε on S. For some hε a smooth, non-negative function
on M that vanishes on some neighbourhood of S, such that hε(M \ Uε) = 0 and such
that its gradient has the g+ norm inferior or equal to 2/ε in the support of t. Then we
have

∣∣∣∣∫
M

(µt + v∇t)
∣∣∣∣ =

10.4 Colombeau algebras

Some distribution-valued stress-energy tensors still do not make sense for the Einstein
equations within the Geroch-Traschen class of metrics.
For some applications, such as the study of shockwaves or the thin-shell formalism, it
may be useful to consider tensor-valued distributions rather than tensor fields. As most
quantities will require second derivatives of the metric tensor at most, this will happen
if the metric tensor is weaker than C2. Unlike for other theories like electromagnetism,
though, the usual theory of distributions cannot be applied directly since general relativity
is not a linear theory. Since distributions do not form an algebra, they cannot be used
directly for general relativity. This is encapsulated in Schwartz’s impossibility theorem :
Defining generalized functions by sequences of smooth functions (uε)ε with a regulariza-
tion ε.
For (uε)ε ∈ C∞(M), space of sequences of moderate growth :

EM(M) = {(uε)ε|∀ ∈ N,∀N > 0,∀ξi ∈ TM, sup
p∈K
|Lξ1 ...Lξkuε(p)| = O(ε(−N))}

with U a subset of M with compact closure. The set of all sequences of functions with
derivatives that are at most divergent as εN .
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Set of negligible functions :

N{(uε)ε|∀ ∈ N,∀N > 0,∀ξi ∈ TM, sup
p∈K
|Lξ1 ...Lξkuε(p)| = O(εN)} (10.18)

Mollifier of distributions

Definition 10.14. A mollifier is a function such that bla bla bla

Product of two mollified distribution
Generalized functions

10.5 Generalized sections of tensor bundle
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11 The Weyl transformation and conformal

spacetimes

11.1 The Weyl transformation

The Weyl transformation is the local rescaling of the metric tensor by a nowhere vanishing,
positive continuous function Ω.

g(−,−)→ Ω(x)g(−,−) (11.1)

That is, we have two diffeomorphic spacetimes (M, g) and (M, g′), where g′ = Ωg, or in
components, g′µν = Ω(x)gµν . Unless Ω(x) = 1, this map is not an isometry.
(It would be possible to also include a change of coordinates between the two, by consid-
ering (M, g) and (N, g′) with a diffeomorphism f : M → N , but this will help to avoid
confusion with the conformal invariance. As it is, we’re only considering the diffeomor-
phism f = IdM , so that f ∗g = g)

gµν → Ω(x)gµν (11.2)

gµνgνρ = δµρ → gµν(Ω(x)gνρ) = Ω(x)δµρ (11.3)

meaning that the Weyl transform of the inverse metric is Ω−1gµν .

det(g)→ Ωn det(g) (11.4)

Derivatives of the metric :

∂ρgµν → Ω(∂ρgµν) + (∂ρΩ)gµν (11.5)

Christoffel symbols :

Γρµν → Γρµν (11.6)

11.2 The conformal transformation

A conformal transformation is a diffeomorphism f from (M, g) to (M′, g′) such that the
metric is of the form

f ∗g′ = Ωg (11.7)

Or, in coordinate form,

Jµ
′

µ J
ν′

ν gµ′ν′(x
′) = Ω(x)gµν(x) (11.8)

The components of the metric in the old coordinate system are related to the components
in the new coordinate system by a factor Ω(x) > 0. The difference between the Weyl
transformation and the conformal transformation should be noted (the terms used can
be ambiguous in the literature) : a Weyl transformation is not an isometry, it changes
the components of the metric even in the same coordinate system. On the other hand,
the conformal transformation is simply a change of coordinates, and because of this, it is
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an isometry. The change in the metric tensor will be compensated by the change in the
definition of the coordinates on the vectors.
For instance, given the dilation xµ 7→ axµ, the Jacobian will be Jµ

′
µ = aδµ

′
µ , Jµµ′ = a−1δµµ′ ,

transforming the metric tensor as g → a−2g and vectors as X → aX. By linearity it can
be easily checked that this is invariant. On the other hand, a Weyl scaling g → a−2g will
only affect the metric and g(X, Y )→ a−2g(X, Y ).
By the fact that it is generated by strictly positive functions, it is not too difficult to
show that the conformal transformation has a group structure.
The Poincaré group is a subgroup : for Ω(x) = 1,

Jµ
′

µ J
ν′

ν gµ′ν′(x
′) = gµν(x) (11.9)

which corresponds to the Poincaré group.
For an infinitesmal transformation :

x′µ = xµ + εµ(x) (11.10)

gµν → gµν − (∂µεν + ∂νεµ) (11.11)

Since g′(x′) = Ω(x)g, we should have that

(∂µεν + ∂νεµ) = (1− Ω(x))gµν (11.12)

In other words, there is some function f such that (∂µεν + ∂νεµ) = f(x)gµν . By taking
the trace :

f(x) =
n

2
∂ρερ (11.13)

Set of all conformal transformations :

• Translations : x′µ = xµ + aµ

• Rigid rotations : x′µ = Λµ
νx

ν

• Dilation : x′µ = αxµ

• Special conformal transformation :

x′µ =
xµ − bµxνxν

1− 2bνxν + bνbνxρxρ

Translations and rotations : Λ = 1
Dilations : Λ = α2

SCT : Λ = (1− 2bµx
µ + b2x2)2

Generators :

• Translation : Pµ = −i∂µ

• Dilation : D = −ixµ∂µ

• Rotation : Lµν = i(xµ∂ν − xν∂µ)

• SCT : Kµ = −i(2xµxν∂ν − x2∂µ)
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Commutators of generators

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pµ] = 2i(ηµνD − Lµν)
[Kρ, Lµν ] = i(ηρµKν − ηρνKµ)

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ)

Jµν = Lµν (11.14)

J−1,0 = D (11.15)

J−1,µ =
1

2
(Pµ −Kµ) (11.16)

J0,µ =
1

2
(Pµ −Kµ) (11.17)

Jab, a, b ∈ {−1, 0, 1, ..., n}
ηab = diag(−1, 1, 1, ..., 1)

[Jab, Jcd] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) (11.18)

Algebra of SO(n+ 1, 1)
Poincaré + dilations : subgroup of the conformal group
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12 Spacetime orientability, spin structures and

spinors

12.1 Orientability

As we have seen in chapter 2, orientability can be defined directly on manifolds by the
positivity of all its Jacobian determinants. With the structures we defined, it is also
possible to define it equivalently as

Proposition 12.1. A spacetime is an orientable manifold if and only if there exists a
global section of the ΛnM bundle, a volume form.

Proof. Consider an orienting atlas {Uα, φα} on M, and a partition of unity {ψα} subor-
dinate to {Uα}. On each coordinate patch Uα, we can define a nowhere-vanishing n-form
by

ωα =
n∧
µ=0

dxµα (12.1)

On every overlap Uα ∩ Uβ 6= ∅, consider the new coordinates xµβ = φβ ◦ φ−1
α . The form

transforms as
If we now define the form

ω =
∑
α

ψαωα (12.2)

Proposition 12.2. If (M, g) is orientable, there exists a unique n-form, the volume form
ε, defined by those properties :

• For every positively oriented orthonormal basis {eµ} at every point p,

ε(e1, e2, ..., en) = 1

• For every orientation-preserving local chart (U, φ),

[φ−1∗ε](p) =
√

det(g(p)dx1 ∧ ... ∧ dxn

12.2 Integrals on manifolds

With the metric tensor, it is possible to define integrals on the manifold, at least locally
(the discussion of global integrals will wait until the chapter on orientations).

Proposition 12.3. Every coordinate chart U allows the definition of a nowhere-vanishing
n-form ωU .

Proof. On a single chart we can simply consider the set of basis vectors of the cotangent
bundle dxµ, and any strictly positive function f(p) defined on U . Then the n-form

ωU =
∧
µ

dxµ (12.3)

is nowhere zero.
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We will define the integral on the domain U of that chart as a map from n-forms to R.∫
U

: Γ(ΛnM)c(Ω)→ R (12.4)

with Γ(ΛnM)c(Ω) the set of sections of the exterior bundle of compact support on the
subset U . The integration is done by projecting this n-form on Rn using the coordinate
chart and using the usual Lebesgue integral.
For a chart (U, φU), the n-form (φ−1

U )∗ω is an n-form on O ⊂ Rn

If supp(ω) ⊂ U , we can define the integral∫
O

(φ−1)∗ω (12.5)

Proof.

Stoke’s theorem :

Theorem 12.4. For an orientable manifold, given a k-form ω,∫
∂D

ω =

∫
D

dω (12.6)

12.3 Space orientability

Theorem 12.5. If there exists a global section of ΛnM, noted ε, the manifold is ori-
entable.

Theorem 12.6. If the manifold isn’t orientable, there exists a closed curve such that the
parallel propagation of a volume form isn’t consistent.

12.4 Time orientability

Time orientability is the notion that, globally speaking, there is the possibility of defining
a future and a past direction for all causal vectors. This is always possible locally (cf.
theorems below), but as some examples will show, this may fail to hold up globally.

12.4.1 Local time orientation

As all spacetimes are locally equivalent to Minkowski space, it is always possible to classify
causal vectors into two distinct sets, corresponding to the two halves of the light cone.
First, defining the set of vectors orthogonal to a vector,

Definition 12.7. Two causal vectors aµ, bµ have the same time orientation if g(a, b) < 0

A choice of a timelike vector v at p will then define a time orientation at p. A causal
vector is said to be future directed if it has the same orientation as v, and past directed
otherwise.
If we are able to define a smooth, non-vanishing timelike vector field, then this time
orientation is promoted to a global one. Much like a choice of orientation on a manifold,
this is not always possible. A spacetime where it is possible to define such an orientation
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is called time-orientable. A spacetime associated with an orientation (M, τ) with τ the
vector field is called time oriented.
If not time oriented, there is a smooth, non-vanishing timelike line element (ie, an ordered
pair of a causal vector and its opposite (V a,−V a))

Theorem 12.8. A spacetime is time-orientable if and only if every closed curved through
a point p is time-preserving.

Proof. If we consider a time-orientation τ and a curve γ, take τp to be the vector field
generated by the parallel propagation of τ at a point p on the curve. By definition,
g(τp, τ) will be negative at p. Since τp will remain timelike on the entire curve, g(τp, τ)
will always be 6= 0. By continuity, τp will always have the same time orientation as τ .
Converse : Choose a time orientation at p, define a time orientation at q by carrying the
time orientation from p to q. Since the curve pq − qp is time preserving, there is a time
orientation defined at every point of the manifold.

Theorem 12.9. A spacetime is time-orientable if and only if every homotopically equiv-
alent closed curved through a point p is time-preserving.

Proof.

Since the trivial loop is trivially time-preserving, we also have that

Corrolary 12.1. Every simply connected spacetime is time orientable.

Theorem 12.10. Any manifold that admits a Lorentz metric also admits a time-orientable
Lorentz metric.

Proof. As we have seen earlier, the conditions for the existence of a section of the metric
bundle are the same as the conditions for the existence of a nowhere vanishing vector
field. Since we can pick that vector field to define a metric in which it is timelike, this
vector field can define a time orientation.

Once we have a global time orientation defined on a spacetime, we can define the notions
of past and future.

Definition 12.11. A causal vector v is called future-pointing if g(v, τ) < 0. It is called
past-pointing if g(v, τ) > 0.

which will translate into the same notions for causal curves.

Definition 12.12. A causal curve is called future-oriented if its tangent vector is future-
pointing everywhere it is defined. It is called past-oriented if it is past-pointing.

While most spacetimes admit a time orientation, it is possible to find spacetimes that
do not. The most common example being the following metric on the two dimensional
cylinder :

ds2 = −2 sin(πx) cos(πx)dt2 + 2 sin(πx) cos(πx)dx2

+ (sin2(πx)− cos2(πx))dxdt (12.7)

with the identification (x, t) = (x+ 1, t).
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Inverse metric :
The Christoffel symbols in this coordinate system are

Γttt = −1

2
gtxgtt,x (12.8)

If we consider the closed coordinate curve of x, with coordinates

t(λ) = 0

x(λ) = λ

its tangent vector Uµ will be

ṫ(λ) = 0

ẋ(λ) = 1

Picking the timelike vector Xµ = (1, 1) at (0, 0) and propagating it around this curve, we
find that

Uµ∇µX
ν = ∂xX

ν + ΓνxρX
ρ = 0 (12.9)

System of equations :

∂xX
t + ΓtxxX

x + ΓtxtX
t = 0

∂xX
x + ΓxxxX

x + ΓxxtX
t = 0

Theorem 12.13. The double cover of a non-time orientable spacetime is time-orientable.

Proof.

For most non-time orientable spacetimes, we will often do the calculations on the double
cover before pulling back on the original spacetime.

12.4.1.1 Examples of non-time orientable spacetimes

A wide class of non-time orientable spacetimes can be generated by the following type of
manifolds

M = (R× Σ)/(T × I) (12.10)

Where R is a timelike coordinate of the original spacetime R× Σ, T is the time reversal
operator, where for (t, x) ∈ R × Σ, T (t, x) = (−t, x), and I is an involution of Σ with
no fixed points (that is, I(I(p)) = p and there is no point p such that I(p) = p), with a
metric where ±∂t is timelike. A common method for this is to pick antipodal points on
some n-sphere, such as I(θ) = (θ + π) or I(θ, ϕ) = (θ + π,−ϕ).

Proposition 12.14. The spacetime M = (R× Σ)/(T × I) is not time-orientable.
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Proof. Consider a closed curve on R × Σ that passes through two points, p and p′ such
that p ∼ p′ under the transformation T × I. For any timelike field, the transport around
that curve will preserve its orientation. For an initially future-oriented vector, we have
g(X, ∂t) < 0.
After identification, the curve from p to p′ will be itself a closed curve, as p′ = I(T (p)).
[Something something the vector transported gets flipped]

The simplest example of such a spacetime is the two-dimensional flat spacelike cylinder
R× S, with the identification (t, θ)→ (−t, θ + π).
There is also quite a wide variety of non-time orientable quotients of de Sitter space,
called elliptic de Sitter spaces. dS/Z2

Lorentzian universe from nothing
De Sitter space with antipodal points identified
basic de Sitter space topology : R1 × S(n−1)

ds2 = −dt2 + α2 cosh2(α−1t)[dχ2 + sin2(χ)(dθ2 + sin2(θ)dϕ2)] (12.11)

2D :

ds2 = −dt2 + α2 cosh2(α−1t)dχ2 (12.12)

Identification of antipodal points (t→ −t, χ→ χ+ π)
Geodesic : Simplest geodesic is Uµ = (1, 0), xµ = (λ, 0)
Timelike geodesic coming from timelike past infinity, crosses t = 0, goes back the same
way with χ = π

AdSD

t

r

Unvrapping of S1

Figure 7: The topological structure of anti de- Sitter.

Calabi Markus example : De Sitter generated by −t2 + x2 + y2 = 1, identification like
(t, x, y)→ (−t,−y, x)
”For a large class of these spacetimes, one can always choose metrics without CTCs; time
nonorientability is then their only causal pathology.”

12.5 Spacetime orientability

A spacetime is called spacetime orientable if there exists an n-form ε which admits a
global section.
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Proposition 12.15. If a spacetime is orientable in the topological sense, it is spacetime
orientable.

Proof. x

Theorem 12.16. A spacetime is spacetime orientable if and only if it is time orientable
and space orientable.

Proof. x

12.6 Clifford algebras

We previously constructed both the tensor algebra and the exterior algebra for the tangent
space, and used those to construct the associated tensor bundle and exterior bundle. In
addition to those algebras, we can construct a more general version of the exterior algebra
called the Clifford algebra, which will be used to build the space for spinors.
If we consider some vector space V equipped with a quadratic form q : V → R

q(av) = a2q(v) (12.13)

The map (v, w) 7→ q(v + w)− q(v)− q(w) is linear in v and w
We can verify that the bundle metric on the tangent plane TpM forms a quadratic form

q(v) = 〈v, v〉 (12.14)

Exterior algebra on the vector space
antisymmetrized product of two vectors :

v ∧ w =
1

2
(v ⊗ w − w ⊗ v) (12.15)

inner product defines musical isomorphisms between V and V ∗, which extends to
∧
V

and
∧
V ∗, a hodge duality between the exterior algebras and the Clifford algebra

12.6.1 Multivectors

From this, we can define multivectors, which are made from sums of members of the
exterior algebras

∧p.

Definition 12.17. The set of multivectors is the direct sum of the exterior algebras of
the vector space ∧

V =
n⊕
p=0

p∧
V (12.16)

We will note a multivector A as

A =
n∑
0

Ai = A0 + A1 + ...+ An (12.17)

with Ai ∈
∧i V . A Polyvector of definite order is called homogeneous.
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Definition 12.18. The projector 〈·〉r projects a multivector on its homogeneous part of
grade r.

〈A〉r = Ar (12.18)

Proposition 12.19. The projector has the following properties :

1. 〈A+B〉r = 〈A〉r + 〈B〉r

2. 〈λA〉r = λ〈A〉r

3. 〈〈A〉r〉s = 〈A〉rδrs

Proof. 1.

A+B =
n∑
i=0

(Ai +Bi)→ 〈A+B〉r = Ar +Br = 〈A〉r + 〈B〉r

2.

〈λA〉r = 〈
n∑
i=0

λAi〉r = λAr = λ〈A〉r

3. x

A multivector that only has non-zero components of grade 0 and 1 is called a paravector.
A = A0 + Aiei, A

0 = 〈A〉0, Aiei = 〈A〉1
If we note the inner product (v, w) as v ·w, we define the Clifford product of two vectors
as

uv = u · v + u ∧ v (12.19)

This is a multivector uv ∈
∧
V , with the sum of a scalar and bivector.

This has the property

u · v =
1

2
(uv + vu)

u ∧ v =
1

2
(uv − vu)

The wedge product is generalized easily enough, simply by using

A ∧B =
n∑
i,j

〈A〉i ∧ 〈B〉j (12.20)

If we pick an orthonormal basis {ei} for V , then, as ei · ej = 0, it is not too hard to show
that

eiej = ei ∧ ej (12.21)

which will help to extend the Clifford product to all multivectors.
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Proposition 12.20. The Clifford product is distributive and associative.

Proof.

(a+ b)c = (a+ b).c+ (a+ b) ∧ c
= a.c+ b.c+ a ∧ c+ b ∧ c
= ac+ bc (12.22)

(ab)c = (12.23)

12.6.2 The Clifford algebra

Clifford algebra C`(V ) is the set of multivectors
∧
V equipped with the Clifford product.

Definition 12.21. The Clifford algebra C`(V, q) of a vector space V with quadratic form
q is an associative unital algebra such that, given the ideal Iq

Definition 12.22. The Clifford algebra has the following properties, for A,B,C ∈ C`(V )
:

1. AB ∈ C`(V )

2. 1A = A1 = A

3. A(BC) = (AB)C

4. A(B + C) = AB + AC

5. (B + C)A = BA+ CA

6. For a ∈ V

C`k(V ) is the vector space of polyvectors of grade k

C`(V ) =
n⊕
k=0

C`k(V ) (12.24)

C`0 = R, C`1(V ) = V

R⊕ V = C`0(V )⊕ C`1(V ) ⊂ C`(V ) (12.25)

Even and odd Clifford algebras :

C`even(V ) =
⊕
k∈2N

C`k(V ) (12.26)

C`odd(V ) =
⊕

k∈2N+1

C`k(V ) (12.27)

Both with dimension 2n−1
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C`even(V ) is a subalgebra of C`(V )
Pseudoscalars : n-multivector. Orientation operator :

ε = e1 ∧ ... ∧ en (12.28)

ε2 = (−1)
n(n−1)

2
+s (12.29)

Multiples of ε are pseudoscalars.
If n is odd, ε commutes with all multivectors. Otherwise, it commutes with even grade
multivectors and anticommutes with odd graded ones

εPr = (−1)r(n−1)Prε (12.30)

The center (set of elements that commute with all) of C`(V ) is C`0(V ) if n even, C`0(V )⊕
C`n(V ) if odd
Talk about Grassman algebras, even/odd Clifford algebras, Pin group

12.6.3 Automorphisms

Reversion : Transformation from C` to C`, such that for all polyvectors, the factors are
reversed

(v1...vk)
T = vk...v1 (12.31)

Main involution : acts on basis vectors as e∗i = −ei.

a 7→ (−1)nεaε−1 (12.32)

Factor of 1 for even graded elements, −1 for odd graded.
Clifford conjugation : R̄ = (R∗)T

Scalar product on multivector : 〈A,B〉 = A ·B = 〈ATB〉0

A ·B = 〈A〉0 · 〈B〉0 + 〈A〉1 · 〈B〉1 + ...+ 〈A〉n · 〈B〉n (12.33)

Hodge duality :

? : Λp → Λn−p (12.34)

Ap 7→ ?Ap (12.35)

Frame {ei} on V defines a frame on
∧
V by the multivector eI = ei1 ∧ ... ∧ eik , I =

{i1, ..., ik}, e∅ = e0 = 1. Multivectors eI gives a basis to
∧
V , and then to C`(V ), I goes

from 1 to 2n.

A = AIeI = A0 + Aiei + Aije{ij} + ...+ Ai1i2...ine{i1,i2,...,in} (12.36)

For an orthonormal basis ei · ej = ηij = ±δij, we can define ηIJ = eI · eJ , then

A ·B = ηIJA
IBJ (12.37)

Complexified Clifford algebra : C`(V ) = C× C`(V )
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12.6.4 Clifford groups

The Clifford group Γ(V ) is the restriction of the Clifford algebra to elements that admit
an inverse, that is, for x ∈ Γ(V ), there exists an x−1 ∈ Γ(V ) such that x−1x = xx−1 = 1.
The group action on an element of the Clifford algebra is

Γ(V )× C`(V ) → C`(V )

(x, a) 7→ −xax−1 (12.38)

We will also ask that this group action preserves the vector space, so that for v ∈ V ,

−xvx−1 ∈ V (12.39)

Those conditions define the Clifford group

Γ(V ) = {x ∈ C`(V )|∃x−1, x−1x = xx−1 = 1,∀v ∈ V, −xvx−1 ∈ V } (12.40)

The existence of an inverse and the fact that x1 = 1x = x proves that it has a group
structure, since the Clifford product is associative.
Representation of Γ(V ) :

ρ : Γ(V )→ GL(V )

x→ ρ(x)

such that ρ(x)v = −xvx−1

Theorem 12.23. ρ is a surjective homomorphism from Γ(V ) to O(p, q)

Theorem 12.24. ρ is a surjective homomorphism from Γeven(V ) to SO(p, q)

Even and odd subsets of the Clifford groups :

Γeven(V ) = Γ(V ) ∩ C`even(V )

Γodd(V ) = Γ(V ) ∩ C`odd(V )

Since the product of two even elements is even, Γeven(V ) is a subgroup of Γ(V ). Γodd(V )
is not since the product of two odd elements is not odd.
if x ∈ V :

−xvx−1 = v − 2
v · x
x · x

x (12.41)

Reflection of v with respect to the hyperplane orthogonal to x.
Rotation is the product of two reflections : a rotation will be

(xy)v(xy)−1 = xyvy−1x−1 = RvR (12.42)

(xy) is a product of two vectors : A0 + A2.
Rotation : R ∈ Γeven such that RvR−1, R̄R = ±1
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The Pin group Pin(p, q) is the subgroup of Γ(V )

Pin(p, q) = {s ∈ C`(V )|si ∈ V, s = s1s2...sk, s̄s = ±1} (12.43)

The Spin group Spin(p, q) is the subgroup of Γ(V )

Spin(p, q) = {s ∈ C`(V )|si ∈ V, s = s1s2...s2k, s̄s = ±1} (12.44)

Spin(p, q) is a subgroup of Pin(p, q) and C`even(V )

Spin(p, q) = Pin(p, q) ∩ C`even(V ) (12.45)

O(p, q) = Pin(p, q)/Z2

SO(p, q) = Spin(p, q)/Z2

SO↑(p, q) = Spin↑(p, q)/Z2

Spin(p, q) ∼= Spin(q, p), not true for Pin(p, q) and Pin(q, p)

12.7 Specific algebras

12.7.1 Algebra of real space

A few simple examples are Clifford algebras of signature (p, 0) for low dimensions.

For (1, 0) : C`(R) = C : z = a+ be1,

(b1e1)(b2e1) = (12.46)

z1z2 = a1a2+ (12.47)

12.7.2 The spacetime algebra and the Dirac algebra

The case that will interest us will be for the case where the vector space will be the
tangent space of the manifold, in which case the vector space will be Rn and the inner
product will be either the bundle metric 〈·, ·〉 or the metric tensor g (we will see later
that this will lead us to the same thing).

We will denote this as C`(R1,n), called the spacetime algebra. Its complexification will
be C`(R1,n), called the Dirac algebra.

C`(R1,n) isometric to C`(R2,n)?

Dirac algebra : Clifford group C`(R1,3) ≈ SL(2,C)
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12.7.3 Constructing the Clifford bundle

Clifford bundle of multivector fields :

C`(TM) = tpC`(TpM) (12.48)

Clifford bundle of differential multiforms :

C`(T ∗M) = tpC`(T ∗pM) (12.49)

Both have typical fiber the spacetime algebra C`(R1,n−1)

Isomorphism between C`(TM) and C`(T ∗M) by extension of the musical isomorphisms.

Action of the connection on the Clifford bundle

12.7.4 Associated bundles and pinor bundles

Pinor : vector spaces acted upon by irreducible representation of a Clifford algebra

Real representation of the algebra C`(V ) :

ρ : C`(V )→ EndR(W ) (12.50)

complex rep :

ρ : C`(V )→ EndC(W ) (12.51)

Endomorphisms on some K-vector space W .

Representations are equivalent if

A

EndK(W ) EndK(W ′)

ρ′

ρ
Adf

Adf : EndK(W )→ EndK(W ′) (12.52)

Definition 12.25. A pinor representation of Pin(V ) is the restriction of an irreducible
representation of C`(V ).

Spinor bundle πS : S →M
Notation : components of a spinor

ξ = ξAeA (12.53)

dual spinors, in the cospinor bundle πS∗ : S∗ →M

ψ(ξ) = ψAξ
a (12.54)

Complex conjugate : ξ → ξ̄ = ξ̄AeA
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12.7.5 Solder form and spinor metric

Solder form

γ : (12.55)

One benefit of using frame fields rather than the metric tensor is that it permits to define
the usual tensor operations on spinor fields naturally.

γµ = γaeµa (12.56)

{γµ, γν} = 2ηab(eµ)a(e
ν)bI = 2gµνI (12.57)

12.8 Orientability and spin structure

Definition 12.26. A manifold is said to admit a spin structure if it possesses a principal
Spin bundle π : P →M with the universal cover

F : P → SOM (12.58)

Theorem 12.27. If the oriented orthonormal frame bundle exists and is trivial, there
exists a spin structure on the manifold.

Pin group Pin(p, q) : double cover of the orthogonal group O(p, q)
if manifold is space orientable but not time orientable : sinors
if manifold is spacetime orientable : spinors
Spinors : group SL(2,C)
Spin structure
Rokhlin theorem

Definition 12.28. A manifold is called a spin manifold if it admits a spin structure.

12.9 Associated vector bundles

Spinor bundle S : Complex vector bundle assocated to the principal bundle of spin frames
over M
If the manifold admits a spin structure, we can define

∇aψ
A = ∂aψ

A − (Γa)
A
Bψ

B (12.59)

(Γa)
A
B = −1

4
ωabc(γ

b)AC(γc)CB (12.60)

12.10 Discrete symmetries

CPT symmetry
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13 Killing vectors and symmetries

Killing vectors are a generalization of the early notions of the symmetries of the met-
ric tensor, as the simple notion of the symmetry with respect to a coordinate x if the
components fulfil ∂xgµν = 0 fails to be coordinate independent.
A Killing vector corresponds to a vector field which, if the metric tensor is pushed along
its flow, will leave it invariant.
For a Killing vector field K,

LKg = 0 (13.1)

For all X, Y

g(∇XK,Y ) + g(X,∇YK) = 0 (13.2)

Killing equation :

∇µKν +∇νKµ = 0 (13.3)

Proposition 13.1. If we have a nowhere vanishing Killing vector field K on some neigh-
bourhood, then there exists a coordinate patch with a coordinate x for which K = ∂x
and ∂xgµν = 0

Proof. As with all nowhere-vanishing vector fields, such a coordinate exist. In which case
we have

∇µKν +∇νKµ =

(13.4)

Theorem 13.2. The largest number of Killing vector a 4-dimensional spacetime can
have without being maximally symmetric is 7.

Theorem 13.3. For n > 5, the largest number of Killing vector a spacetime can have
without being maximally symmetric is 1

2
n(n− 1) + 2.

13.1 Stationary spacetimes and spacetimes of a

single spacelike Killing vector

If there is a single spacelike or timelike Killing vector [7], we may
Consider a Killing vector field K that is everywhere timelike or everywhere spacelike.
Take S the collection of all trajectories of K, γ ∈ S means γ is an inextendible curve with
tangent K. Define a mapping ψ :M→ S, for every point p ∈M , ψ(p) is the trajectory
of K passing through p. [PROVE SOMEWHERE THAT THE TRAJECTORIES ARE
UNIQUE FOR SUCH A FIELD]
We assume that S has the structure of a smooth 3-manifold such that ψ is a smooth
mapping, to avoid the case where a trajectory of K passes arbitrarily near itself.
S is not necessarily the hypersurface, it is just a quotient space of M with covering map
ψ
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13.1.1 Stationary spacetimes

If K is everywhere timelike, the spacetime is called stationary.

hab = gab −
KaKb

KaKa
(13.5)

ds2 = KaK
a(dt+ Aµdx

µ)2 + hµνdx
µdxν (13.6)

If, in addition of being timelike, the Killing vector field is orthogonal to the spacelike
hypersurfaces, the spacetime is said to be static.

K(µ,ν) = 0, K[µKν;σ = 0 (13.7)

13.2 Axisymmetric spacetimes

If there is a single isometry group G = S

13.3 Cylindrically symmetric spacetimes

2 Killing vectors : one with isometries acting on S1, the other on R1, second one spacelike.

13.4 Spherically symmetric spacetimes

Spherical symmetry : Group of motion acting on a spacelike S2

ds2 = −e2ν(r,t)dt2 + e2λ(r,t) + Y 2(r, t)(dθ2 + sin2(θ)dϕ2) (13.8)

If a spherically symmetric spacetime is also stationary,

ds2 = −e2ν(r)dt2 + e2λ(r) + Y 2(r)(dθ2 + sin2(θ)dϕ2) (13.9)

[SHOW IT TRUE FOR ANY TIMELIKE KILLING FIELD]

13.5 Homogeneous spacetimes

n− 1 spacelike Killing vectors

ds2 = −dt2 + a(t)gRabdx
adxb (13.10)

13.6 Isotropic spacetimes

Spacetime isotropic at a point p if there exists an isometry with the group structure of
SO(n− 1) with spacelike Killing vectors.

116



13.7 Maximally symmetric spacetimes

A Riemannian space is maximally symmetric if and only if it admits a group Gr of motion

with r =
1

2
n(n+ 1)

ds2 =
ηµνdx

µdxν

(1 + 1
4
Kηµνxµxν)

(13.11)

In (3 + 1) dimensions and spherical coordinates

ds2 = −(1−Kr2)dt2 +
dr2

1−Kr2
+ r2(dθ2 + sin2(θ)dϕ2) (13.12)

Rµνστ =
R

n(n− 1)
(gµσgντ − gµτgνσ) (13.13)

13.8 Null Killing vector fields

13.9 Killing spinors
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14 Petrov and Segre classification

14.1 Subspaces of the tangent plane

n-dimensional vector subspaces of TpM : Sn, Tn, Nn

The subspace Sn is a spacelike subspace : its generators are all spacelike
The subspace Tn is a timelike subspace : its orthogonal space T⊥n is spacelike
S1, T1, N1 : subspace generated by a tangent vector that is spacelike, resp. timelike, null.
Jordan normal form :

Theorem 14.1. For a finite-dimensional vector space V and any linear operator A :
V → V , there exists a decomposition of V into a direct sum of invariant subspaces of A

V = V1 ⊕ V2 ⊕ ...⊕ Vk (14.1)

and a basis {e(i)
j }1≤j≤ni of each Vi such that

(A− λi Id)e
(i)
1 = 0

(A− λi Id)e
(i)
2 = e

(i)
1

...

(A− λi Id)e(i)
ni

= e(i)
ni−1

Decompose a matrix into block diagonal matrix

J =

J1

. . .

Jk

 (14.2)

with Ji upper diagonal matrices

J =

λ1 1 0

0 λ1 1

0 0 λ1

λ2

λ3 1

0 λ3

. . .




(14.3)

14.2 Petrov classification

Classification of spacetimes according to the eigenvalues of the Weyl tensor with eigen-
bivector Xµν

1

2
CµνρσX

ρσ = λXµν (14.4)

given a unit timelike vector, take Xµ = Xµνuν
Petrov types :
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• Type I

• Type D

• Type II

• Type N

• Type III

• Type O

14.3 Segre classification

Classification of rank 2 symmetric tensors
Rank (1, 1) tensors define a map T : TpM → TpM , T (X) = Y
Eigenvalue problem on the symmetric tensor S

SµνX
ν = λvµ (14.5)

Xν(Sµν − λδµν ) = 0 (14.6)

Segré notation : between brackets, orders of different Jordan blocks of a matrix. If
multiple Jordan blocks for the same eigenvalue, written between parenthesis. Complex
conjugate eigenvalues : Z and Z̄
For a matrix with k real eigenvalues and l pairs of complex conjugates eigenvalues :

{(p11...p1r1)...(pk1...pkrk)Z1Z̄1...ZlZ̄l} (14.7)

Example : 
λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 (14.8)

Type [1111] 
λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

 (14.9)

Type [31] if λ1 6= λ2, [(31)] otherwise.
Possible types : partitions of n + replacement of 2, 11 by ZZ̄

2 → [2], [11], [ZZ̄]

3 → [3], [21], [ZZ̄1], [111]

4 → [4], [31], [22], [2ZZ̄], [ZZ̄ZZ̄], [211], [1111]

Peblański notation
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14.3.1 Segre classification of the Ricci tensor

RµνX
µν = λXµν (14.10)

4 basic Segre types :
A1 : 

λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

 (14.11)

A2 : 
λ1 0 0 0
0 λ2 0 0
0 0 Z 1
0 0 0 Z̄

 (14.12)

A3 : 
λ1 0 0 0
0 λ2 0 0
0 0 λ3 1
0 0 0 λ3

 (14.13)

B : 
λ1 0 0 0
0 λ2 1 0
0 0 λ2 1
0 0 0 λ2

 (14.14)

Type Segre notation Plebański notation
A1 [111, 1] [S1 − S2 − S3 − T ](1111)

[11(1, 1)] [S1 − S2 − 2T ](111)

[(11)1, 1] [2S1 − S2 − T ](111)

[(11)(1, 1)] [2S − 2T ](11)

[1(11, 1)] [S − 3T ](11)

[(111), 1] [3S − T ](11)

[(111, 1)] [4T ](1)

A2 [11, ZZ̄] [S1 − S2 − Z − Z̄](1111)

[(11), ZZ̄] [2S − Z − Z̄](111)

A3 [11, 2] [S1 − S − 2N ](112)

[1(1, 2)] [S − 3N ](12)

[(11), 2] [2S − 2N ](12)

[(11, 2)] [4N ](2)

B [1, 3] [S − 3N ](13)

[(1, 3)] [4N ](3)
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15 The causal relations

A Lorentzian metric naturally define a causal structure on the manifold, corresponding
to the regions that a causal curve can access, or physically, the spacetime events that can
influence each others. This will be expressed by the causal relations between each points
of the manifold.
For most of this chapter, the spacetimes will be assumed to be time-orientable, as most
of the important concepts require the existence of a well-defined past and future direction
for causal curves. If the spacetime is not time-orientable, some of these results can be
salvaged by going to the time-orientable double cover.

15.1 Definition

Once we have a manifold equipped with a metric and a time orientation, it becomes
possible to define some ordering relations on the manifold.

15.1.1 Relations

First, a brief reminder on relations.

Definition 15.1. A relation R on a set X is a subset R ⊂ X ×X. If (p, q) ∈ R, we note
it by pRq.

A relation is reflexive if for all p, pRp, symmetric if for all p, q, pRq implies qRp, and
transitive if for all p, q, r, pRq and qRr implies pRr. It is also antisymmetric if pRq and
qRp implies p = q.
A relation is a preorder if it is reflexive and transitive is a preorder. If it is in addition
symmetric, it is an equivalence relation. If a preorder is antisymmetric, it is a partial
order. If a relation is irreflexive (pRp is never true) and transitive, it is a strict preorder.
A strict partial order that is asymmetric (pRq implies that qRp is never true) is a strict
partial order.
If for two points p, q ∈ X and a (strict) partial order R, we have pRq or qRp, we say that
p and q are comparable. If this is true for all points of X, R is a (strict) total order.

Definition 15.2. A relation R on two sets A, B holds, noted ARB, if for every point
p ∈ A, q ∈ B, pRq holds.

In particular, we can write all the previous relations as relations on sets, by the equivalence

pRq ↔ {p}R{q} (15.1)

If a relation R1 is a subset of a relation R2, R1 ⊂ R2, we have that for all p, q ∈ X

pR1q =⇒ pR2q (15.2)

15.1.2 Causal relations

The important relations on a spacetime are the chronological, strictly causal, causal and
horismos relations.
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• p chronologically precedes q if there is a future-directed timelike curve connecting
p to q, noted p� q.

• p strictly causally precedes q if there is a future-directed causal curve connecting p
to q, p 6= q, noted p < q.

• p causally precedes q if there is a future-directed causal curve connecting p to q,
with possibly p = q, noted p ≤ q.

• p horismos q if p ≤ q and p 6� q, noted p↗ q.

Those causal relations will form the basis of the causal structure. We can also define
their negation in the following way

Definition 15.3. A point p is causally independent , noted p‖q, if there is no causal curve
connecting p and q.

Definition 15.4. A point p is chronologically independent , noted p|q, if there is no
timelike curve connecting p and q.

As with relations in general, those can also be defined on subsets of M.

An important notion for causality will be the notion of a vicious point

Definition 15.5. A point p is vicious if p ≤ p. A point that isn’t vicious is said to be a
virtuous point.

A point being vicious implies the existence of a closed causal curve, which is a continuous
mapping of S1 to the manifold that is everywhere causal. If it is additionally everywhere
timelike, we say that it is a closed timelike curve.

As the degenerate curve of length 0 is not timelike, and neither is the constant curve
∀λ, γ(λ) = p, p � p and p < p implies the existence of a second point on this curve,
which implies that there exists a point q = γ(λq), λq 6= λp, such that p � q and q � p.
The same applies to strict causality. This will be of use for further proofs.

15.2 Properties of causal relations

To prove a lot of properties of causal relations, it will be practical to approximate them
by a series of piecewise geodesic curves, in the following way :

Definition 15.6. A trip from p to q is a curve piecewise composed of future-oriented
geodesics such that its past endpoint is p and future endpoint is q. There is a series of
points (xi), i = 1, ..., n, such that x0 = p and xn = q, and such that xi and xi+1 are
linked by a timelike geodesic. The tangent vectors at endpoints are required to have the
same time orientation : g(u+(xi),

− (xi)) < 0

We can then prove the following [24] :

Theorem 15.7. p� q is equivalent to the existence of a trip going from p to q.
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Proof. Cover the timelike geodesic by a finite number of convex normal neighbourhood Ni

(this is possible due to the curve between two points being compact and hence having a
finite subcover). The first point of the trip is x0 = p, in the convex normal neighbourhood
Ni0 . x1 is the future endpoint of γ ∩ N̄i0 . Since it is a convex normal neighbourhood,
there exists a future-oriented timelike geodesic connecting x0 and x1. If x1 = q, it is
proven. Otherwise, x1 ∈ Ni1 , and the argument repeats.
Converse : Let α be the trip from p to q. µ and λ are two consecutive geodesic segments
of α, with r the future endpoint of λ and the past endpoint of µ. Consider some convex
normal neighbourhood of r. For some basis in TrM, exp−1

r (µ) has coordinates of the form
(τ, τ tan(χ), 0, 0), while exp−1

r (λ) has coordinates of the form (−τ, τ tan(χ), 0, 0) (τ > 0,
χ ∈ [0, π/4)). This corresponds to coordinates for a future-oriented and past-oriented
geodesic starting at r.
Connect the two segments (τ0, τ0 tan(χ), 0, 0) and (−τ0, τ0 tan(χ), 0, 0), for some small
enough value of τ0, by a smooth curve η in TrM that is everywhere timelike. For instance,
by switching the plane (t, x) to polar coordinates

F (R, θ) = R cos(
θπ

π − 2χ
)− exp(R2 sin2(

θπ

π − 2χ
)− 1)−1 = 0 (15.3)

This is a deformation of the standard bump function.
[INTERSECTION OF SMOOTHING AND CURVES : θ = π/(2− χ)???]
[Something something composition of the bump function in polar coordinates + coordi-
nate change to θ → θ π

π−2χ
, smooth transformation so smooth joint]

Tangent vector of this curve in T (TM) :

η′ = (∂RF, ∂θF ) (15.4)

The slope of η never reaches the null cone. For a small enough neighbourhood (small
enough τ0), expr(η) is timelike in M

Theorem 15.8. If γ1 is a null geodesic from p to q and γ2 is a null geodesic from q to r,
then either p� r or γ1 ∪ γ2 is a null geodesic from p to r.

Proof. If γ1 ∪ γ2 is not a single null geodesic, this is due to a discontinuity in the tangent
vector at q (a ”joint”). As previously seen, we can take

Corrolary 15.1. p ≤ q is equivalent to the existence of a causal trip between p and q.
Also, if

Equivalence of chronological/causal/strictly causal/horismos relation with piecewise geodesic
curves : cf Penrose
Horismos equivalent to piecewise null geodesic proof : zig zags also ”this always works
because the convex normal neighborhoods form an open cover”
With the equivalence to causal trips, we can then prove the following properties :

Proposition 15.9.

1. p� q implies p ≤ q.

2. p� q and q � r implies p� r.

3. p ≤ q and q ≤ r implies p ≤ r.
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4. If p� q and q ≤ r, p� r.

5. If p ≤ q and q � r, p� r.

Proof.

1. By definition.

2. Identifying the future endpoint of the trip p� q with the past endpoint of q � r.

3. Identifying the future endpoint of the causal trip p < q with the past endpoint of
q < r.

4. Let α be a trip from a to b, γ a causal trip from b to c. Cover the trip γ from q to r
with a finite number of convex normal neighbourhoods N1, ..., Nr (because causal
trips are compact). We can assume no loops in γ because the redundant parts can
be deleted. x0 = q ∈ Ni0 . x1 the future endpoint of the connected component of
γ ∩ N̄i0 . y1 ∈ Ni0 on the final segment of α, y1 6= x0.

Property 1 implies that the chronological order relation is a subset of the causal order
relation, �⊂≤. This is also true for the horismos order relation, ↗⊂≤.

Proposition 15.10. If p ≤ q, then we have either p � q, p ↗ q, p = q, or both p = q
and either p� q or p↗ q.

15.2.1 Inverse relations

From the basic causal relations we can easily define their inverse. We define the inverse
relations p� q, p ≥ q, p↖ q to signify the existence of a past-directed timelike, causal,
causal but not timelike curve connecting p to q.

Proposition 15.11.

1. If p� q, then q � p.

2. If p ≤ q, then q ≥ p.

3. If p↗ q, then q ↖ p.

Proof. This can easily be constructed by taking the curve γ connecting p to q and then
taking the curve γ(−λ).

15.3 Restricted causal relations

We can define causal relations on subsets of the manifold. Given a subset U ⊂ M, we
say that the restriction of �, ≤, ↗ to U , noted �

U
, ≤
U

, ↗
U

, is defined by

Definition 15.12. We write that p �
U
q, p ≤

U
q, p ↗

U
q if there exists a future-directed

timelike, causal, causal but not timelike curve connecting p and q lying entirely within
U .

We can in fact write every causal relation in this form, since pRq is simply equivalent to
pR
M
q.
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15.3.1 Properties

Proposition 15.13. For two subsets U, V of M such that U ⊂ V , we have

• �
U
⊂�

V

• �
U
⊂�

V

• ≤
U
⊂≤
V

• ≥
U
⊂≥
V

Proposition 15.14. �
U
⊂≤
U

and �
U
⊂≥
U

remains true in a restricted relation.

Proposition 15.15. If S ⊂ U , then S ≤
U
S and S ≥

U
S

15.4 Causality and maps

For a map f between two spacetimes (M1, g1) and (M2, g2), we say that it is

• chronal preserving if p� q implies f(p)� f(q)

• causal preserving if p ≤ q implies f(p) ≤ f(q)

• a chronal isomorphism if f is bijective and f, f−1 are chronal preserving

• a causal isomorphism if f is bijective and f, f−1 are causal preserving

It can be shown that these relations hold under a Weyl transformation.

Proposition 15.16. If we consider the sets of relations on a spacetime (M, g), the
conformal map

f : (M, g)→ (M,Ωg) (15.5)

is a causal isomorphism.

Proof. if p� q in the spacetime (M, g), there exists a curve connecting p and q such that
g(γ′, γ′) < 0. Under a Weyl transform, this curve will have the inner product Ωg(γ′, γ′).
As Ω > 0, this curve will always be timelike. The same applies to all other relations.

Thanks to this, we can define the causal structure as follows

Definition 15.17. The causal structure of a spacetime (M, g) is the set of all conformally
equivalent spacetimes.

coset(M, g) = {(M, g̃)|g̃ = Ωg, ∀p, Ω(p) > 0} (15.6)

This will allow us to study the causal structure of the spacetime without taking into
consideration more complicated structures such as the distances between points.
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16 Causal sets

From those causal relations, several causal sets can be defined for regions of spacetime.

• The chronological future of a point p is the set of all points that can be reached by
a future-directed timelike curve from p. It is noted I+(p) = {q ∈M | p� q}. The
same definition applies for the chronological past I−(p) with past-directed curves.

• The causal future of a point p is the set of all points that can be reached by a
future-directed causal curve from p. It is noted J+(p) = {q ∈ M | p ≤ q}. The
same definition applies for the causal past J−(p) with past-directed curves. Unlike
the chronological future and past, ∀p, p ∈ J±(p)

• The future and past horismos of a point p is the substraction of the chronological
past/future from the causal past/future, the set of points that can only be reached
by a null curve. It can be defined as E+(p) = {q ∈ M | p ↗ q}, or E+(p) =
J+(p) \ I+(p), with similar definitions for E−(p)

We will starting here mostly only talk about I+, J+ and E+, the generalization to I−,
J− and E− being trivial in most cases.
Those causal sets can be generalized to be defined on a set of spacetime points by

I+(S) =
⋃
p∈S

I+(p) (16.1)

and identically for J+(S) and E+(S). This leads to the following useful identity by
commutativity of the union

I±(A ∪B) = I±(A) ∪ I±(B) (16.2)

The intersection of I+(p) and I−(q), also called the causal diamond of p and q, is useful
enough to merit its own notation. It will be noted 〈p, q〉. The intersection of J+(p) and
J−(q) will be noted as 〈〈p, q〉〉.

Definition 16.1. The chronology violating set (resp. causality violating region) V is the
set of all points p ∈ M such that p ∈ I(p) (resp. there exists a non-trivial causal curve
frop p to itself).

If we replace the causal relations in the definition by their restriction to an open set U ,
we have their equivalent, noted

I+(S, U) =
⋃
p∈S

{q ∈ U |p�
U
q}

J+(S, U) =
⋃
p∈S

{q ∈ U |p ≤
U
q} (16.3)

E+(S, U) =
⋃
p∈S

{q ∈ U |p↗
U
q}

As with restricted causal relations, we have immediatly that I+(S,M) = I+(S), and
identically for J and E.
Some immediate consequences of those definitions and the properties of the causal rela-
tions are
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Proposition 16.2.

1. I+(S, U) ⊂ J+(S, U)

2. I+(I+(S, U), U) = I+(S, U)

3. J+(J+(S, U), U) = J+(S, U)

4. J+(I+(S, U), U) = I+(J+(S, U), U) = I+(S, U)

Proposition 16.3. The restricted causal sets on a geodesically convex set U are the
intersection of those sets with U .

Proof. NOT SURE IF TRUE

16.0.1 Past and future sets

Past and future sets P, F are sets that will contain all their own past and future points,
that is, if p ∈ P , all points q � p belong to P , and similarly with p� q with F . This is
efined by

Definition 16.4. A future set F obeys the property I+(F ) = F . Similarly, a past set P
obeys I−(P ) = P .

16.0.2 Common past and future

Definition 16.5. The chronological common past and future of a set U ⊂ M is the set
of points

↓ U = I−({p ∈M|∀q ∈ U, p� q})
↑ U = I+({p ∈M|∀q ∈ U, p� q}) (16.4)

This means that first we consider the set of points
Set of all past and future sets : P , F

Definition 16.6. A hull pair is an element (P, F ) ∈ P × F such that P =↓ F and
F =↑ P .

16.1 Minkowski space

As a lot of proofs will rely on the causal behaviour of objects in the tangent space TpM,
it will be interesting to first study the causal structure of Minkowski space.
We consider Minkowski space as the spacetime (Rn, η), with the time orientation τ =
(1,~0).
In Minkowski space, the geodesic equation being simply ẍ(λ) = 0, a geodesic between
the points a and b can be written as

~ab = a+ (b− a)λ (16.5)

for λ ∈ [0, 1]. That geodesic is timelike/null if |~ab| > 0, = 0. Those are future/past
oriented if (bt − at) > 0.
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Theorem 16.7. If a� b, then b 6� a, and if a ≤ b, b 6≤ a.

Lemma 16.1. The metric tensor η has range R.

Proof. Consider the timelike vector (t, 0, 0, ...) and the spacelike vector (0, x, 0, ...). Their
norm will be respectively −t2 and x2. Along with any null vector, this will span all of
R.

Theorem 16.8. I+(p) is open in Minkowski space, while J+(p) is closed.

Proof. I+(p) is the pre-image of the open interval (−∞, 0) with g, while J+(p) is the pre-
image of the closed interval (−∞, 0]. g being continuous, those pre-images are respectively
open and closed.

16.2 Properties in a convex neighbourhood

The causal sets possess a lot of interesting properties in convex neighbourhood, which as
we will happen to be the causal properties of Minkowski space. For this section, we will
consider a point p in M, with a convex neighbourhood U around p, and a point q such
that q ∈ U and p 6= q.

Theorem 16.9. q ∈ I+(p, U) (resp. J+(p, U), E+(p, U)) is equivalent to the geodesic
between p and q being timelike (resp causal, null) and future pointing.

Proof. Since q ∈ I+(p, U), there exists a timelike curve γ connecting p with q. If we
consider the pullback of that curve in the tangent space TpM via the exponential map
exp−1(γ), since it is a timelike curve by theorem X, it will lie entirely within the future
light cone. Since Dp is convex, it is possible to define a segment from exp−1

p (p) to exp−1
p (q),

lying in the future light cone. The image of this segment is a future pointing timelike
geodesic.

Theorem 16.10. The image of I+(0)∩Dp (resp. J+(0)∩Dp, E
+(0)∩Dp) in the tangent

space at p by the exponential map is I+(p, U), resp. J+(p, U), E+(p, U).

Proof.

Theorem 16.11. I+(p, U) is open in U and M, while J+(p, U) is closed.

Proof. Since I+(0) is open in Minkowski space and the domain of the exponential map is
itself open, I+(0) ∩ exp−1

p (U) is open. expp being a homeomorphism , the image of that
set will be open, which is I+(p, U).

Theorem 16.12. J+(p, U) is the closure in U of I+(p, U)

Proof. Since expp is a homeomorphism over the convex normal neighbourhood, J+(p, U) =

expp(J
+(0)) = expp(Ī

+(0)) = expp(I
+(0)) = I

+
(p)

Theorem 16.13. Causal curves in a compact subset of U have two endpoints.

Proof.
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16.3 Global properties

Proposition 16.14. The causal and chronological future of any set obeys the following
properties

1. intJ+(S) = I+(S).

2. J+(S) ⊂ I+(S), and J+(S) = I+(S) if J+(S) is closed.

3. J̄+ = Ī+.

Proof.

1. Since I+(S) is open and I+ ⊂ J+, I+(S) ⊂ int(J+(S)) follow. If p ∈ int(J+(S)),
since int(J+(S)) is open, there exists a q ∈ I−(p) ∩ J+(S). So p ∈ I+(q) ⊂
I+(J+(S)) = I+(S). Since this is true for every point p, int(J+(S)) ⊂ I+(S),
and the equality is verified.

2. For any q ∈ J+(S), there will be a causal curve γ from p ∈ S to q ...

3. I+ ⊂ J+, so Ī+ ⊂ J̄+. [USE PROP 1]

Let (p, q) ∈ J̄+, U and V neighbourhoods of p and q.
U, V open subsets ofM, V ⊂ U . V is causally convex in U if any causal curve in U with
endpoints in V is entirely contained in V
if U =M, V is called causally convex
≤U is the causal relation when U is treated as a spacetime. If V is causally convex in U ,
then ≤U restricted to V is identical to ≤V
Converse is false : example : U = L2, V = {(t, x) ∈ R||t|, |x| < 1}
Totally vicious spacetimes are such that only V =M is causally convex in M
If V ⊂ W ⊂ U , V is causally convex in W

Proposition 16.15. I+(p) is open.

Proof. If q ∈ I+(p), then there is a trip α from p to q. For some convex neighbourhood
V of q, let’s pick a point q− in between p and q, and p+ in a convex neighbourhood U of
p such that p+ is between p and q.

Proposition 16.16. The chronological future of every point forms a cover of the manifold
:
⋃
p∈M I+(p) =M.

Proof. For any point p ∈M, we have a convex normal neighbourhood Up. Since Dp is an
open set around 0 in TpM, we have a past-directed geodesic to some point q in I−(p, Up).
The point p itself will be in I+(q, Uq) ⊂ I+(q). Hence every point is in the chronological
future of some point of the manifold.

Proposition 16.17. J+(p) is not necessarily closed.

Proof. The standard counterexample for this is Minkowski space with a point removed.
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Proposition 16.18. J+(p) is closed for all p if and only if the spacetime contains no
naked singularities (???)

Proof. If the spacetime contains a naked singularity, there exists a point q and a future-
directed timelike or null incomplete geodesic γ ⊂ I−(p) converging to p in the b-boundary
of the spacetime. Since for all pi ∈ γ, pi ≤ p and pi ≤ q, p ≤ q, so that p ∈ E−
If J+(p) is closed, any sequence of points {ri}i∈N such that for all i, ri ∈ J+(p).

Consider a point q ∈ J+(p). If there is a naked singularity, there will be a pair of points
p, q such that there is a

Pick a point to the future of all qn??? No causal incomplete curve - All sequences
converge???

Proposition 16.19. For i = {1, 2, ...}, the chronology violating set (resp. causal) corre-
sponds to connected components of the form Vi = I+(pi)∩I−(pi) (resp. J+(pi)∩J−(pi)).
(cf Kriele)

Proof. For a connected component Vi ⊂ V , since Vi is connected, for every p, q ∈ Vi there
exists a continuous path γ ⊂ Vi connecting them. If we consider for all z ∈ γ, I+(z)
is a neighbourhood of z, since z ∈ I+(z) and I+(z) open. Then since γ is compact,
we can cover it by I+(zj), for a finite collection zj ∈ γ, meaning that there is a future-
directed timelike curve from p to q, and the same argument applies with I−(p), so that
Vi = I+(p) ∩ I−(p).

16.4 Causal ordering

Definition 16.20. g1 < g2 : the causal cone of g1 is in the timelike cone of g2

n-degree causal relations :

1
< S ) = ...

(S
1
> = ... (16.6)

theorem : p ∈M, neighbourhood U 3 p. ∃V 3 p, V ⊂ U such that there are two metrics
on V , g+ and g−, such that g− < g < g+

16.5 Causally convex sets

Definition 16.21. An open set U is causally convex if and only if every causal curve γ
that intersects it is such that γ ∩ U is connected.

M and ∅ are causally convex sets.

Causal diamond 〈p, q〉 is causally convex.

Definition 16.22. A point p ∈ M is strongly causal if for any neighbourhood U 3 p,
there is a causally convex subset V ⊂ U .
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16.6 Achronal sets

Definition 16.23. A subset S of M is achronal if for every point p, q ∈ S, there is no
points such that q ∈ I+(p), or I+(S) ∩ S = ∅

Definition 16.24. The edge of an achronal set S is the set of all the points p ∈ S̄ such
that every neighbourhood U of p contains a timelike curve from I−(p, U) to I+(p, U)
that does not intersect S. [WARNING DIFFERENT DEFINITION IN PENROSE AND
O’NEILL, CHECK IT]

Definition 16.25. For a closed, achronal set S, its past (resp. future) domain of de-
pendence D+(S) (resp. D−(S)) is the set of points p such that every future (resp. past)
inextendible causal curve going through p intersects S. The total domain of dependance
D(S) of dependance is the union of the two.

Definition 16.26. The future (resp. past) Cauchy horizon H+(S) (resp. H−(S)) of
an achronal closed set S is the set of points p ∈ D+(S) (resp. D−(S)) such that the
chronological future (resp. past) does not intersect with D+(S) (resp. D−(S)). The total
Cauchy horizon H(S) is the union of the two.

H+(S) = {p|p ∈ D+(S), I+(p) ∩D+(S) = ∅} (16.7)

H−(S) = {p|p ∈ D−(S), I+(p) ∩D−(S) = ∅} (16.8)

H(S) = H+(S) ∪H−(S) (16.9)

H±(S) = D± \ I∓[D±(S)] (16.10)

Properties :
for S ⊂M a closed achronal set :

1. D+(S) is closed

2. H+(S) is achronal and closed

3. S ⊂ D+(S)

4. p ∈ D+(S) implies I−(p) ∩ J+[S] ⊂ D+(S)

5. ∂D+(S) = H+(S) ∪ S

6. ∂D(S) = H(S)

7. I+[H+(S)] = I+(S) \D+(S)

8. intD+(S) = I+[S] ∩ I−[D+(S)]

(proof as exercize in Penrose, gotta prove it)

Definition 16.27. A future Cauchy horizon is compactly generated if its null generators
remain in a compact region K for λ < λ0
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Definition 16.28. The base set B of a compactly generated future Cauchy horizon is
the set of all points p ∈ H+(S) such that there is a null generator γ such that p is a past
terminal accumulation point of γ.

Either a closed timelike curve going through p ∈ B

Theorem 16.29. For a compactly generated Cauchy horizon H+(S), the base set B ⊂ K
is always non-empty. All null generators of H+(S) approach B asymptotically : for every
past-directed generator and every open neighbourhood U of B, there exists λ0 ∈ I such
that for every λ > λ0, γ(λ) ∈ U [?].

Proof. Consider a past directed null geodesic γ in H+(S) and a monotone increasing
sequence {λi} without limit in I. There are infinitely many points γ(λi) in K [show it].
Then there must be an accumulation point p of {γ(λi)} that is within H+(S), since it
is a closed subset of M. Then p ∈ B, and all of those accumulation points are in K by
compactness (by contradiciton something something cf Kay).

Theorem 16.30. B is composed of null geodesic generators entirely contained within B
and are past and future inextendible.

Proof. Riemannian metric h on M, parametrize all curves on M by arc length s with
respect to this metric. For p ∈ B, there is a null generator of H+(S) such that p is a past
accumulation point. Parametrize γ so that s so that s is increasing in the past direction.
Since γ is past inextendible and K compact, s extends to infinite values even if λ doesn’t.
So there is a sequence {si} diverging to infinity such that γ(si) converges to p. (ki)

a the
tangent of γ at si in the arc length parametrization, with unit norm wrt h. Since the
subset of TM such that π(TM) = K and with vectors of unit norm is compact, there
must exists a tangent vector kα at p such that {(γ(si), (ki)

α)} converges to (p, kα). Since
each (ki)

α is null, by continuity so is kα.
For γ a maximally extended null curve with initial condition (p, kα), parametrized by arc
length, γ(0) = p. For q ∈ γ and γ(s) = q. Since {si} diverges, for large i (s+ si) will be
in the interval of γ. Since {(γ(si), (ki)

α} converges to (p, kα), by continuity of exp and s
(wrt g and h), {γ(s+ si)} converges to q. Thus q ∈ B

Closed null geodesics of B : fountains
There are cases where the null geodesics aren’t closed (non-strongly causal spacetimes)

Theorem 16.31. Strong causality is violated at every p ∈ B.

Theorem 16.32. H+(S), B its base set. For p ∈ B and U a globally hyperbolic neigh-
bourhood of p, there exists q, r ∈ U ∩ intD+(S) such that q and r are connected by a null
geodesic, but not a causal curve in U .

16.7 Cauchy hypersurface

Cauchy hypersurfaces will be the model on which the notion of a specific moment in time
is built for a spacetime.

Definition 16.33. A Cauchy hypersurface is a subset S ⊂ M that intersects every
inextendible timelike curves exactly once.
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Theorem 16.34. A Cauchy hypersurface S is a closed achronal hypersurface.

Proof. Since every inextendible timelike curve intersects S and every point inM contains
a timelike curve, we have that M = I+(S) ∪ S ∪ I−(S).

Example of a closed boundaryless achronal hypersurface that isn’t a Cauchy hypersurface
(Hyperbole in Minkowski space)

Theorem 16.35. A Cauchy hypersurface S intersects every inextendible causal curve.

Proof.

Theorem 16.36. A closed achronal set Σ is a Cauchy surface if and only if D(Σ) =M

Theorem 16.37. A closed achronal set Σ is a Cauchy surface if and only if H(Σ) = ∅.

Theorem 16.38. If Σ is a closed, achronal and edgeless subset of the spacetime, then
it is a Cauchy surface if and only if every inextendible null geodesic intersects Σ, enters
I+(Σ) and I−(Σ).

Proof. x

Theorem 16.39. A nakedly singular spacetime does not admit a Cauchy surface (Geroch
and Horowitz 1979)

Definition 16.40. A partial Cauchy surface is a closed boundaryless achronal surface
such that every causal curve intersects it at most once.

As not all spacetimes admit a Cauchy surface, but may be somewhat well-behaved up to
a point, we can also define the notion of a partial Cauchy surface.

Definition 16.41. A partial Cauchy surface is a closed achronal hypersurface that in-
tersects every causal curve at most once.

From this definition, we can immediatly see that any Cauchy hypersurface is also a partial
Cauchy hypersurface.

Proposition 16.42. If a spacetime contains a partial Cauchy hypersurface, there is a
submanifold containing it where it is a Cauchy hypersurface.
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17 Causal properties

17.1 Time separation

For p, q ∈ M, with C+
t (p, q) the set of all future directed timelike curves connecting p to

q. The time separation d : M×M → [0,+∞] is the longest proper time connecting p
to q

d(p, q) =

{
0 if C+

t (p, q) = ∅
sup[L(α), α ∈ C+

t (p, q)]
(17.1)

Properties :

1. d(p, q) > 0 if and only if p ∈ I−(q)

2. If there’s a closed timelike curve through p, then d(p, p) =∞, otherwise d(p, p) = 0

3. d(p, q) ∈ (0,+∞) implies d(q, p) = 0

4. Triangle inequality : p ≤ q ≤ r implies d(p, q) + d(p, r) ≤ d(p, r)

Theorem 17.1. d is lower semi-continuous. For pm, qm ∈M, with lim pm = p, lim qm =
q, we have

lim inf
m→∞

d(pm, qm) ≥ d(p, q) (17.2)

Example where d is not upper semi-continuous : remove line from spacetime, q on the
light cone of that line’s boundary, pn just to the right of that line, converges to just under
the line’s edge. Then lim supm→∞ d(pn, q) = 1 while d(p, q) = 0

Proposition 17.2. If p� p, d(p, p) =∞

Proof. Since p � p, there is a closed timelike curve γ, γ(0) = γ(1) = p. The length
of that curve is positive. It is then possible to construct a piecewise timelike curve by
making identical copies of this curve and connecting their endpoints, using γ(k) = p,
k ∈ Z. For n copies, the length of this curve will be n time the original length. As this
process does not converge, d(p, p) =∞.

Something about timelike singularities and convergence???

17.2 Time functions

A time function on a spacetime is a

Borel measure m on the spacetime such that

• m is finite : m(M) <∞

• For a non-empty open subset U , m(U) > 0
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For an orientable spacetime, pick an orientation and ε be the oriented volume element
associated to the metric. Take an open covering of M such that every open set has
measure by ε inferior to 1. Take a partition of unity {ρn} surbordinate to this covering.
The measure m is the one associated to the volume element

εm =
∞∑
n=1

2−nρnε (17.3)

If the spacetime isn’t orientable, go to the double cover and pullback, take half the
measure

Definition 17.3. The future and past volume functions, t+ and t− are functions t± :
M→ R such that

t±(p) = ∓m(I±(p)) (17.4)

Proposition 17.4. t± is non-decreasing on any future-directed causal curve.

Proof. If p ≤ q, then I+(q) ⊂ I+(p) and I−(p) ⊂ I−(q). Since m is a measure,
−m(I+(p)) < −m(I+(q)) and m(I−(p)) < m(I−(q)).

Definition 17.5. A generalized time function is a function t : M → R that is strictly
increasing on all future-directed causal curves. It is called a time function if it is continu-
ous as well, and a temporal function if it is smooth with a past-directed timelike gradient
∇t.

Proposition 17.6. A spacetime with closed timelike curves admits no generalized time
function. A spacetime with closed null curves admits no time function.

Proof. If a function is strictly increasing on a closed timelike curve, we have f(p) > f(p).
Hence there can be no such function. If the spacetime includes a closed null curve
but no closed timelike curve, we can represent this curve as the limit of a sequence of
future-directed timelike curves (γn)n∈N. If a generalized time function exists, then for
every γn, f(γn(0)) < f(γn(1)), meaning that if f is continuous, the limit should be that
f(p) < f(p).

17.3 Spacetime topologies

Beyond the manifold topology of the spacetime itself, we may define topologies on it by
its causal structure.

17.3.1 The path topology

Definition 17.7. The path topology , or Zeeman topology, is the topology in which a
subset U ⊂ M is open if for every timelike curve γ, there is a subset V ⊂ M in the
manifold topology such that

U ∩ γ = V ∩ γ (17.5)

Strictly finer than the manifold topology since trivially true for any open set U in the
manifold topology.
Prove that it’s a topology :
Since it’s finer than the manifold topology, ∅ and M are in it
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Intersection of two open sets U1 ∩ U2 : if U1 ∩ γ = V1 ∩ γ and U2 ∩ γ = V2 ∩ γ, then

(U1 ∩ U2) ∩ γ = U2 ∩ (V1 ∩ γ) = V1 ∩ (U2 ∩ γ) = (V1 ∩ V2) (17.6)

Union of a collection of open sets
⋃
Ui : if for all i, Ui ∩ γ = Vi ∩ γ, then

(
⋃
i

Ui) ∩ γ =
⋃
i

(Ui ∩ γ)

=
⋃
i

Vi (17.7)

Basis for the topology : light cones I+(p, U) ∪ p ∪ I−(p, U) for a convex normal neigh-
bourhood U .

17.3.2 The Alexandrov topology

In general, the Alexandrov topology is a topology defined by a partial order on a set

Definition 17.8. The Alexandrov topology on a set X is a topology where the intersection
of arbitrarily many open sets is open.

This is in contrast with the usual definition of topology where only a finite intersection
is required to be open.

[SHOULD ACTUALLY BE INTERVAL TOPOLOGY]

The topology of interest in general relativity is the one generated by the basis 〈p, q〉, for
all p and q.

Proposition 17.9. The basis 〈p, q〉 generates an Alexandrov topology.

Since this will be the only Alexandrov topology of interest, it will usually be referred to
as the Alexandrov topology of a spacetime.

Show that the Alexandrov topology is a topology : any point p is in a causal diamond,
so M is a union of the base. Empty set is the union of no basis element.

Intersection of two causal diamonds is a causal diamond.

Union of causal diamonds???

Proposition 17.10. The Alexandrov topology is at least as coarse as the manifold
topology.

Proof. This only requires us to prove that any open set of the Alexandrov topology is an
open set of the manifold topology, which is trivially true since we have shown that I± is
always an open set in the manifold topology.

Very coarse Alexandrov topology : timelike cylinder, which has for all p, q ∈M

I+(p) ∩ I−(q) =M (17.8)

It is the trivial topology.
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17.4 Timelike homotopies

Similarly to the general notion of curve homotopies if there exists a continuous map
mapping one curve to another, it can be useful to have a notion of homotopies specifically
for timelike curves.
There are several ways to deal with this. The first one is due to Smith.

Definition 17.11. A q-loop based at p , q ∈ N, is a piecewise closed timelike curve with
exactly q corners.

The timelike homotopies of q-loops of arbitrary q would be too large, and indeed reduce
to the usual homotopy group (we can approximate any loop with some q-loop zig-zagging
in a very small neighbourhood of the original loop), but on the other hand, the product
of q-loops of fixed q does not form a group, as the trivial curve is not a q-loop, and if we
have a timelike curve γ, the product γ ∗ γ−1 will have (2q + 2) corners. To prevent this,
we define, in addition to q-loops, stings.

Definition 17.12. A sting based at p is a curve composed from an arbitrary finite curve
γ such that the sting will be the path γ ∗ γ−1, with γ(0) = p.

And then we define the set of generalized q-loops.

Definition 17.13. The p-factorization of a curve γ, with p ∈ γ, is the decomposition
γ = γ+ ∗ γ−, where γ+(1) = p.

Definition 17.14. For a curve ζ starting at p, the curve

γ∗ = γ+ ∗ ζ ∗ ζ−1 ∗ γ− (17.9)

is said to be obtained fom γ by the insertion of a sting. Likewise, γ is obtained from γ∗

by the deletion of a sting.

Definition 17.15. A generalized q-loop is a curve made of a q-loop by a finite number
of insertions and deletions of stings. The constant curve ep will also be considered a
generalized q-loop based at p.

Proposition 17.16. Any q-loop can be turned into a q′-loop, q′ < q, by the insertion of
a sting.

Proof. By inserting a purely spacelike sting at singular points, we can remove any singular
point, as one of the left or right tangent vector will fail to be causal at that point.

Definition 17.17. equality modulo stings

Corrolary 17.1. Given a q-loop γ, there is a q-loop equivalent modulo stings to γ ∗ γ−1

Proposition 17.18. The set of generalized q-loops with the path product ∗ and equiv-
alence relation modulo stings =̇ forms a group. .

Proof. If we consider the

The group of q-loops and stings at p will be noted τq(L, x) under the operation

γ1(λ) ∗ γ2(λ) = γ12 (17.10)
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Proposition 17.19. If a spacetime isn’t time-orientable, all of its odd τq groups will be
trivial.

Theorem 17.20. All τq(L, x) groups are trivial for Minkowski space.

Proof.

Universal coverings
Def : Covering space of a topological space X is a space C with a continuous surjective
map p : C → X, ∀x ∈ X, there exists a neighbourhood U 3 x such that p−1(U) is a
union of disjoint open sets in C which are mapped homeomorphically onto U by p.
Universal cover : simply connected cover
Ideas : check if all contractible CTCs -¿ causal cover
If CTC is contractible → quasiregular singularities (”unwrapping CTCs”) Otherwise no
problem
Definition : timelike connected, timelike contractible.
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18 Causal hierarchy

It is possible to classify spacetimes by their causal pathologies. There are many possible
schemes and many possible classes of such spacetimes, but the principal classification is
the causal ladder, which classifies spacetimes, from most to least pathological, as

• Any spacetime

• Non-totally vicious

• Chronological

• Causal

• Distinguishing

• Strongly causal

• Stably causal

• Causally continuous

• Causally simple

• Globally hyperbolic

Each rung of the causal ladder implies the one above it. That is, if a spacetime is
distinguishing, then it is also causal, chronological and non-totally vicious.

18.1 Totally vicious spacetime

While not directly part of the causal ladder, the lowest rung on it will be defined in
opposition to this type of spacetime, which has the worst causal pathologies. A totally
vicious spacetime is a spacetime for which every point is vicious.

Definition 18.1. A totally vicious spacetime is a spacetime in which all p ∈ M obeys
p� p.

Equivalently, the chronology violating region V is the entire spacetime.

18.1.1 Properties

Proposition 18.2. A spacetime is totally vicious if and only if for all p, q ∈M, d(p, q) =
∞.

Proof. By the triangle inequality, d(p, q) ≥ d(p, p) + d(p, q). Since d(p, p) =∞ if p� p,
d(p, q) = ∞. Conversely, if d(p, q) = ∞ for all points, then d(p, p) = ∞ > 0, meaning
there is always a future-directed timelike curve between them, so p� p.

Proposition 18.3. A spacetime is totally vicious if and only if I+(p) = I−(p) =M.
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Figure 8: The causal ladder
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Proof. Since p ∈M, if I±(p) =M, p ∈ I±(p), or p� p.
Conversely, if we take d(p, q) =∞ for all points per the previous property, for any point
r, d(p, r) > 0 and d(r, p) > 0, meaning that for all points p, r ∈ M, r ∈ I±(p), so
I±(p) =M.

Proposition 18.4. A totally vicious spacetime has trivial Alexandrov topology, τ =
{∅,M}.

Proof. For every basis set of the topology 〈p, q〉,

I+(p) ∩ I−(q) =M∩M =M (18.1)

Their intersections and unions will only be M, with ∅ being the empty union of no
member of the basis.

Proposition 18.5. Totally vicious spacetime admits no generalized time function, and
its future and past volume functions are constants.

Proof. Since it contains closed timelike curves, there is no generalized time function. Its
future and past volume functions are

t±(p) = ∓m(I±(p)) = ∓m(M) (18.2)

Theorem 18.6. All compact spacetimes with a timelike killing vector are totally vicious.

This relies on a few other theorems

Proof. For a compact spacetime with timelike Killing vector Kµ, if it is static, K is
parallel for the conformal metric

ĝ =
1

g(K,K)
g (18.3)

the 1-form ω = −ĝ(K,−) is closed so if M is compact it cannot be simply connected.
[TO FINISH]

Timelike loop at every p ∈ M equivalent to timelike vector field with periodic integral
curves

18.1.2 Examples

A few examples of totally vicious spacetimes include the Gödel spacetime, variations on
the timelike cylinder S1

t × Σ or the van Stockum dust.

18.2 Non-totally vicious spacetime

Opposite to totally

Definition 18.7. A spacetime is non-totally vicious if it is not totally vicious, ie, there
is a point p such that p 6� p.

141



18.3 Chronological spacetime

A spacetime is chronological if it contains no closed timelike curves.

Definition 18.8. A spacetime is chronological if there is no point p ∈ M such that
p� p.

Equivalently, it is chronological if its chronology violating region is empty : V = ∅.
By definition, if a spacetime is chronological, it is also non-totally vicious.

18.3.1 Properties

Proposition 18.9. For all p ∈M, d(p, p) = 0.

Theorem 18.10. A spacetime is chronological if and only if t± is strictly increasing on
any future-directed timelike curves.

Proof.

Theorem 18.11. No compact spacetime is chronological.

Proof. Since I+(p) for all p forms an open cover of the manifold, if the manifold is
compact, then this cover has a finite subcover, of the form {I+(p1), I+(p2), ..., I+(pN)}.
If there were no closed causal curves, p1 would not be in I+(p1), and hence must belong
to I+(pi), i 6= 1. But if p1 ∈ I+(pi), then I+(p1) ∈ I+(pi), and then the cover can be
reduced to {I+(p2), ..., I+(pN)}. The process can be repeated until only one chronological
future forms the entire cover of the manifold, meaning that p has to be within I+(p).

Remark 18.12. The original proof of this theorem was a little more involved,

Original proof by Markus in ”Remark on cosmological models”
Example of a non-totally vicious spacetime that is not chronological : any spacetime with
compact chronology violating region

Proposition 18.13. A non-totally vicious spacetime may not be chronological.

Proof. Example : Toroidal spacetime, Killing vector field ∂t, everywhere timelike except
two points

Proposition 18.14. A spacetime is chronological if and only if t± is strictly increasing
on any future-directed timelike curve.

Proof. Since t± is constant on any closed timelike curve, being strictly increasing means
that there is no point such that p� p. Conversely, if p� q but t−(p) = t−(q)

18.3.2 Examples

18.4 Causal spacetime

Definition 18.15. A spacetime is causal if there is no point p ∈M such that p < p.

By definition, if a spacetime is causal, it is chronological.

142



Theorem 18.16. A chronological but non-causal spacetime has a closed null geodesic.

Proof. If the spacetime isn’t causal, then there’s a point p such that p < p. Since it is
chronological, that curve cannot be a timelike curve. So by theorem X, it must be a
geodesic.

Proposition 18.17. Not all chronological spacetimes are causal.

Proof.

18.5 Distinguishing spacetime

Definition 18.18. A spacetime is future (resp. past) distinguishing if the chronological
future (resp. past) of two different point is not the same. If it is both future and past
distinguishing, we say it is distinguishing.

I±(p) = I±(q)→ p = q (18.4)

Theorem 18.19. If a spacetime is either past or future distinguishing, then it is causal.

Proof. If a spacetime is non-causal, then there is a closed causal curve, meaning that we
have two points p, q ∈M with the property p� q � p. Which means that we have both
I+(p) ⊂ I+(q) and I+(q) ⊂ I+(p), in other words, I+(p) = I+(q). Hence it cannot be
future distinguishing. The same proof applies for past distinguishing spacetimes.

Theorem 18.20. For two spacetimes (M1, g1) and (M2, g2), (M1, g1) distinguishing,
and f : M1 → M2 a diffeomorphism such that p ≤ q → f(p) ≤ f(q), then (M2, g2) is
distinguishing and g1 = Ωf ∗g2.

Proof.

Proposition 18.21. A causal spacetime may not be distinguishing.

Proof. Punctured cylinder example

Proposition 18.22. A past-distinguishing spacetime may not be future-distinguishing,
and vice-versa.

Proof. Punctured cylinder - a strip example

18.6 Strongly causal spacetime

Definition 18.23. A spacetime is strongly causal if for every neighbourhood U of every
point p ∈M, there is a strongly causal neighbourhood V ⊂ U .

Proposition 18.24. Strongly causal spacetimes are non-imprisoning.

Proposition 18.25. A spacetime is strongly causal if and only if the Alexandrov topology
is equivalent to the manifold topology.
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Example of a distinguishing spacetime that is not strongly causal : Carter spacetime
R3 with the identifications

(t, x, y) ∼ (t, x, y + 1)

(t, x, y) ∼ (t, x+ 1, y + z) (18.5)

With a ∈ (0, 1) ∩ (R \Q)

ds2 = −c(t)(dt2 − dx2)− 2dtdy + dz2 (18.6)

18.7 Almost stably causal spacetime

[paper by E. Howard Causal Stability Conditions for General Relativistic Spacetimes ]

• There’s at least one open set Qg such that under small variations of g, large enough
to introduce closed causal curves on M, stable causality is still holding outside of
Qg

• The spacetime is globally causally stable and it’s possible to widen the light cones
on an open region in order to produce closed causal curves.

• Light cones can be open within the causal stable spacetime at a local and macro-
scopic level

18.8 Reflecting spacetime

Definition 18.26. A spacetime is past (resp. future) reflecting if I−(q) ⊂ I−(p) implies
I+(p) ⊂ I−(q) (resp. I+(q) ⊂ I+(p) implies I+(p) ⊂ I+(q)). It is reflecting if it is both
past and future reflecting.

Proposition 18.27. In a reflecting spacetime, (I−(p), I+(p)) is a hull pair.

18.9 Stably causal spacetime

Definition 18.28. A spacetime is stably causal if there exists a metric g′ ∈ Con(M)
such that g < g′ and g′ is causal.

equivalent to : There exists a timelike vector field ξµ such that (M, g + ξ[ ⊗ ξ[) is
chronological
Spacetime is stably causal iff it admits a global time function.

18.10 Causally continuous

I+(p) ⊂ I+(q) ≡ I−(q) ⊂ I−(p)
close points have roughly the same past and future

Stably causal spacetime that isn’t causally continuous : Minkowski space minus a non-
empty closed set

144



18.11 Causally simple

Definition 18.29. A spacetime is causally simple if it is ccausal and J±(p) is closed for
every point p.

Theorem 18.30. A causally simple spacetime is distinguishing.

Proof.

18.12 Globally hyperbolic spacetime

A globally hyperbolic spacetime is the most well-behaved category of spacetimes regarding
causality, and most reasonable spacetimes are assumed to be globally hyperbolic. It is
roughly defined as having no closed timelike curves or naked singularities (although not
all spacetimes with such characteristics are globally hyperbolic). It has a few equivalent
definitions :

Definition 18.31. A spacetime is globally hyperbolic if it is causal and ∀p, q ∈M, J+(p)∩
J−(q) is compact.

J+(p) and J−(p) are closed for all p
They can also be defined with respect to a Cauchy surface,

Theorem 18.32. A spacetime is globally hyperbolic if and only if it admits a Cauchy
hypersurface Σ.

Proof.

Theorem 18.33. A globally hyperbolic spacetime admits a Cauchy time function.

Proof.

Geroch’s theorem

Theorem 18.34. A globally hyperbolic manifold has the topology M ≈ R × Σ, where
Σ is the topology of one of its Cauchy surface.

Proof.

Theorem 18.35. In a globally hyperbolic spacetime, any points p, q ∈ M such that
p ≤ q can be joined by a causal geodesic with length equal to their time-separation.

18.12.1 Hole-freeness

While global hyperbolicity is sometimes defined informally as corresponding to the ab-
sence of naked singularities and closed causal curves, this is not quite the case. First
because a spacetime can obey those conditions and still fail to be globally hyperbolic (as
we will see, de Sitter space is the most common example), but also because there exists
globally hyperbolic spacetimes that do not quite correspond to the intuitive notion of the

Definition 18.36. A spacetime is called hole-free if for any spacelike hypersurface S and
for any metric-preserving embedding θ : D(S) → M′ into another spacetime (M′, g′),
θ(D(S)) = D(θ(S))
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18.12.2 Causal closedness

Definition 18.37. A spacetime is causally closed if for every p ∈M, J±(p) is closed.

Doesn’t imply even chronology : Gödel is causally closed
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19 Abstract causal spaces

It is possible to describe the causality of a spacetime without any reference to any manifold
structure or topology. Those are called causal spaces. There is a number of different
models for them.

19.1 Etiological space

Definition 19.1. An etiological space is a topological space X equipped with two binary
relations < and �, obeying the axioms that for p, q ∈ X,

1. p < p.

2. < and � are transitive.

3. if p� q, then p < q.

4. if p� p, then there exists a q such that p 6= q and p� q � p.

5. The topology of X is a refinement of the Alexandrov topology from �.

Proposition 19.2. Any time-orientable spacetime is an etiological space.

Proof. If a spacetime is time-orientable, the relations < and � are well-defined on it.
Then axioms 1, 2, 3 are from the properties of the causal and chronological ordering of
points. Axiom 4 stems from p� p implying a closed timelike curve, on which will lie at
least one point. Axiom 5 is from property X.

Definition 19.3. A causal space is a quadruple (X,<,�,↗) of a set X and three
relations on that set, with the axioms that for three points p, q, r ∈ X,

1. p < p.

2. if p < q and q < r, then p < r.

3. if p� q, then p < q.

4. if p < q and q � r, then p� r.

5. if p� q and q < r, then p� r.

6. p↗ q is equivalent to p < q and p 6� q.

Those are precisely the rules that we derived previously for < and�. We can then study
their properties abstractly in this setting without worrying about the manifold structure
behind it.
In addition, we may also add the axioms of causality for specific causal spaces

1. if p < q and q < p, then p = q.

2. p 6� p

A few immediate consequences of the axioms of a causal space are
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• < is a partial order

• � is anti-reflexive and transitive

Proposition 19.4. If p < q < r and p↗ r, then p↗ q ↗ r.

Define inverses >,�,↖
Relations on subsets Y ⊂ X, <Y , �Y , ↗Y .

Definition 19.5. For a finite chain of N points G = (pi)1≤i≤N ordered by < (gi < gi+1),
N ≥ 3, G is called a girder if for every i, pi ↗ pi+2.

Girders, hypergirders, etc

19.2 Reinterpretation on causal anomalies

Reichenbach on causal chains, similar vs identical events (p. 141)
If CTCs are multiply connected, going to covering space
Otherwise, what happens with unwrapping
Going to double cover for non-time orientable
Going from GR to Pauli-Fierz → exchanging CTCs for tachyonic effects

19.3 Theorems on causality

Lemma 19.1. For a closed curve γ in Rn, for every component Uµ of the tangent vector
in a coordinate basis, there exists a point γ(λ) such that Uµ = 0.

Proof. This is a fairly trivial application of Rolle’s theorem. If we pick the trivial chart
of Rn, then the coordinates of the loop for a component µ just a map φµ ◦ γ : I → R,
with φµ ◦ γ(0) = φµ ◦ γ(1). By Rolle’s theorem, there exists a λ ∈ I such that

Uµ =
d

dλ
(φµ ◦ γ(λ)) = 0 (19.1)

Theorem 19.6. A static spacetime with trivial topology M = Rn is always causal.

Proof. Since the metric of a static spacetime can be expressed as

ds2 = −α(x)dt2 + gij(x)dxidxj (19.2)

with gij a Riemannian metric and the coordinate t such that ∂t is the Killing vector, then
by the previous lemma, there exists a point in any closed curve where U t = 0, meaning
that at that point, the tangent vector will be

g(U,U) = gijU
iU j ≥ 0 (19.3)

Since the Riemannian metric is only 0 for U = 0, any non-degenerate curve will have
spacelike tangent vectors.

Corrolary 19.1. Minkowski space is causal.
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A related theorem is

Theorem 19.7. A spacetime with trivial topology M = Rn and a diagonal metric is
always causal.

Proof. Using a similar proof, we have

ds2 = −α(x)dt2 +
N∑
i=1

gii(x)(dxi)2 (19.4)

where gii ≥ 0 to preserve the signature of the metric. Then again for loops, there exists
a point where

g(U,U) =
N∑
i=1

gii(U
i)2 ≥ 0 (19.5)

which again implies that no loop can be timelike at every point.

Lemma 19.2. Any null-homotopic curve γ can be included within a single chart home-
omorphic to R2.

Proof. I STILL DON’T KNOW

Theorem 19.8. A static spacetime only has non-null homotopic closed causal curves.

Find a proof first that contractible closed timelike curves have to be contained within a single simply connected coordinate chart.

Corrolary 19.2. All static spacetimes have a causal cover.

Theorem 19.9. If a compact spacetime admits a covering space with a compact Cauchy
surface, then it contains a closed timelike geodesic. (Tipler)

”Some spacetimes, such as Godel spacetime, do not admit any global time slices. This is
a consequence of three features: it is time orientable; a CTC passes through each point;
and it is simply connected. The edge of an achronal surface S is the set of points p such
that every open neighborhood p ∈ O includes points in I+(p) and I−(p) that can be
connected by a timelike curve that does not cross S.”
Proof : if the space is simply connected, then a boundaryless spacelike hypersurface Σ
would split the spacetime into two disconnected piecesM\Σ (Jordan Brouwer theorem,
generalized). Components are D+ (chronological future of Σ and D− (chronological past).
M is time oriented : timelike vector field everywhere continuous → timelike vector field
everywhere oriented the same way on the surface wrt the normal vector
If p ∈ Σ and γ a future-oriented CTC, then at p, γ̇ points to D+. When γ intersects with
Σ again, γ̇ points the way opposite to the time orientation vector field, which contradicts
that the spacetime is time oriented.

Theorem 19.10. For n > 2, two points of an n-dimensional Lorentz manifold can always
be connected by a spacelike curve.

Proof. Helicoidal curve between the two points in the tangent space
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20 Spacetime boundaries and asymptotic

behaviours

20.1 Conformal compactification

Conformal compactification : Embedding of a non-compact spacetime into a compact
one as a dense open subset, such that the embedding is a conformal map
The conformal compactification of a spacetime (M, g) is an embedding of a conformal
spacetime (M,Ωg) into a larger spacetime (M̂, ĝ) such that M is an open submanifold
of M̂, with a boundary ∂M = I , and the conformal factor can be smoothly extended
in M̂ with Ω(I ) = 0, dΩ(I ) 6= 0

20.1.1 Conformal structure of Minkowski space

The basic example of this is to consider 4-dimensional Minkowski space. The easiest way
to get its structure at infinity is to switch to spherical coordinates, which will allow us to
consider the limit r, t→∞.

ds2 = −dt2 + dr2 + r2dΩ (20.1)

with the use of null coordinates, u = t− r and v = t+ r

ds2 = −dudv + (
v − u

2
)2dΩ (20.2)

Take the conformal metric

ĝ =
g

(1 + u2)(1 + v2)
(20.3)

Coordinate transformation u = tan(p), v = tan(q), p, q ∈ [−π/2, π/2]

ds2 = −dudv + (
sin(p− q)

2
)2dΩ (20.4)

Then finally T = (p+ q)/2 and ρ = q − p, ρ ∈ [−π, π]

dŝ = −dT 2 +
1

4
[dρ2 + sinn−2(ρ)dΩ] (20.5)

If we maximally extend this spacetime, we get Rt × S3.
By suppressing the angular coordinates, we can represent this spacetime as a diagram.
This is called a Penrose or conformal diagram. i0, i+ and i− represent spatial, future
temporal and past temporal infinity, I + and I − are future and past null infinity.

20.2 Spacetime boundaries

If we perform a conformal compactification on a non-compact spacetime, we’ll end up
with a few different points at infinity in the boundary I . We may also wish to include
the points corresponding to singularities in the boundary, as we did with the g-boundary
and b-boundary. All those points will be referred to as ideal points.
There are many different method to classify ideal points and give them a topology, each
with their own benefits.
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i+

i−

i0i0

I +I +

I −I −

Figure 9: Conformal diagram of Minkowski space

20.2.1 The GKP construction

The Geroch-Kronheimer-Penrose boundary construction is performed by identifying points
of spacetime with causal sets, which form a larger set than the spacetime itself, the re-
maining points forming the boundary. The basis for this construction is to associate
each point with its chronological future and past, which will only be well-defined if the
spacetime is distinguishing, so that if p 6= q, then I±(p) 6= I±(q).
The relevant properties to extend this are that

• I±(p) is open.

• I±(p) is a past/future set.

• It cannot be expressed by the union of two proper subsets with the same properties,
since for any proper open subset S ⊂ I±(p), I±(S) ⊂ I±(p).

We then define the generalized sets with those properties. As usual, any proof relating to
past versions of sets will generalize to the future verisons by switching time orientation.

Definition 20.1. A future (resp. past) set is called irreducible if it is not empty and is
not the union of two proper subsets which are themselves future (resp. past) sets. They
are noted respectively IF and IP.

The set of all IP on M will be noted M̂, while the set of all IF will be noted M̌.

Proposition 20.2. A subset S ⊂M is an IP if and only if there exists a future-directed
timelike curve γ such that S = I−(γ).

Proof. If we have a timelike curve γ, suppose that I−(γ) = A ∪ B, with A,B past sets.
I−(γ) will be an IP if for all A,B, either A ⊂ B or B ⊂ A, otherwise we will have both
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points q ∈ A \ B and r ∈ B \ A. Since q, r ∈ I−(γ), there are points q′, r′ ∈ γ such that
q ∈ I−(q′) and r ∈ I−(r′). Since our spacetime is distinguishing and γ is a timelike curve,
we must have either q′ � r′, r′ � q′ or q′ = r′. Which means that if A or B contains the
futuremost point of q′ and r′, ı̂t will also contain both q and r. By contradiction, I−(γ)
is an IP.
Conversely, for P an irreducible past set, consider p ∈ P . Since P is a past set, we have

P = I−(P ∩ I+(p)) ∪ I−(P \ I+(p)) (20.6)

Since it is irreducible, either P = I−(P ∩ I+(p)) or P = I−(P \ I+(p)), but since p /∈
I−(P \ I+(p)),

P = I−(P ∩ I+(p)) (20.7)

meaning that if we pick a point q ∈ P , then q ∈ I−(P ∩ I+(p)), so that there exists a
point r ∈ P ∩ I+(p) such that q � r, which cannot be p or q since our spacetime is
distinguishing. As we have q � r and p � r, this means that for any two points in P ,
there is a point which lies to the future of both.
If we pick a countably dense family of points pi ∈ P , and q0 ∈ P such that p0 � q0. We
can then pick a point q1 to the future of both q0 and p1, and then iteratively a point qi
to the future of both qi−1 and pi. As {qi} is ordered by �, we can form a timelike curve
γ with appropriate smoothing. The set P ∩ I+(pi) will be open in P , and since they are
dense, there exists some k ∈ N such that pk ∈ P ∩ I+(pi). pk ∈ I−(qk), so pi ∈ I−(γ).
Which means that P ∈ I−(γ).

Once we have irreducible sets, we can classify them between the ones that will correspond
to spacetime points and the ones that will correspond to ideal points.

Definition 20.3. Future (resp. past) sets are classified as either proper irreducible future
(resp. past) sets if they can be expressed by I±(p), or terminal irreducible future (resp.
past) sets if they cannot. They are noted as PIF, PIP, TIF and TIP.

Proposition 20.4. A set S is a TIP if and only if there is a future-inextendible timelike
curve γ such that I−(γ) = S. It is a PIP if and only if there is a future timelike curve γ
with endpoint p such that S = I−(γ).

Proof. If there is a curve γ such that I−(γ) = S

In Minkowski space :

Proposition 20.5. Minkowski space has two classes of TIP/TIF : the ones generated
by inextendible curves of bounded acceleration and the ones generated by inextendible
curves of unbounded acceleration.

Proof. Show that curves of bounded accelerations have I±(γ) =M, but this is not true
for unbounded accelerations.

The set of TIP/TIF of curves of constant acceleration will be denoted I −/I +, called past
null infinity and future null infinity, while the TIP/TIF composed of the entire manifold
will be denoted i−/i+, called past (timelike) infinity and future (timelike) infinity.
The chronological past and future form an injection from the spacetime to the set of past
and future irreducible sets.
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I+ : M→ M̌
I− : M→ M̂ (20.8)

the set of PIF is I+(M), the set of PIP is I−(M).
With irreducible sets, we can form the completion of the manifold M̄, such thatM⊂ M̄.
The basis of this completion is to consider the set M̌ ∪ M̂. Since each element of M
corresponds to two elements of M̌ ∪ M̂, I+(p) and I−(p), we have to perform some
identifications. The most obvious one is that p̌ ∼ p̂ if p̌ = I−(p) and p̂ = I+(p), but
things are more complicated for terminal sets, as
M\ = (M̌ ∪ M̂)/ ∼
Example where two terminal sets correspond to the same ideal point
If M is in addition strongly causal, the manifold topology is the Alexandrov topology,
so that we can extend the Alexandrov topology

Definition 20.6. The extended Alexandrov topology is the coarsest topology such that
the following sets are always open for A ∈ M̌, B ∈ M̂ :

Aint = {P ∗ ∈M \|P ∈ M̂, P ∩ A 6= ∅}
Aext = {P ∗ ∈M \|P ∈ M̂,∀S ⊂M, P = I−(S)→ I+(S) 6⊂ A}
Bint = {P ∗ ∈M \|P ∈ M̌, P ∩B 6= ∅}
Bext = {P ∗ ∈M \|P ∈ M̌,∀S ⊂M, P = I+(S)→ I−(S) 6⊂ B}

(20.9)

M\ with the extended Alexandrov topology has a topology that isn’t necessarily Haus-
dorff. Equivalence relation RH by the intersection of all equivalence relations ⊂M\×M\

such that M\/R is Hausdorff. Then we have

M̄ = M \/R (20.10)

Proposition 20.7. If M is strongly causal, the image of p ∈ M in M\ will never be
identified with the image of another point q ∈M.

c-boundary : M̄ \M

20.2.1.1 Budic and Sachs construction

Since for the set M̌ ∪ M̂, we want to identify at least I+(p) with I−(p), it will be
interesting to consider reflecting spacetimes, for which the pair (I−(p), I+(p)) forms a
hull set

20.3 Asymptotic flatness

Once we have the boundaries of our spacetime, it is possible to define its asymptotic
behaviour by observing how it behaves on the boundary.
A spacetime is asymptotically simple if every null geodesic in M has future and past
endpoints on the boundary of its conformal compactification M̂.
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A spacetime is weakly asymptotically simple if there is an open set U ⊂M isometric to a
neighbourhood of the boundary of the conformal compactification M̂ of an asymptotically
simple spacetime.
A spacetime is asymptotically flat if it is weakly asymptotically simple and its Ricci tensor
vanishes in some neighbourhood of the boundary of M̂.
Differences between asymptotic flatness at null infinity, spatial infinity or both
Coordinate version :
A globally hyperbolic spacetime is asymptotically flat if there is a contractible compact
set C
outside of C, g = η + h

lim
r→∞

hµν = O(r−1)

lim
r→∞

hµν,ρ = O(r−2)

lim
r→∞

hµν,ρσ = O(r−3)

20.4 More general asymptotic behaviour

Since quite a wide class of physically important spacetimes are not asymptotically flat,
and the question of isolated objects within the is important, we broaden the definition of
asymptotic behaviours to include more asymptotic spacetimes.
Asymptotically anti de Sitter
Asymptotically FRW
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21 Horizons and trapped surfaces

Apparent horizons, trapped surfaces, event horizons, particle horizons, Hubble horizon,
marginally trapped tubes, trapping horizons, future outer trapping horizons, dynamical
horizons, etc

21.1 Horizons

The general notion of a horizon, as defined by Rindler [26], is a frontier between observ-
ables and unobservable things.
Horizons are generally defined with respect to observers with future-directed timelike
curves γ, to correspond to the notion of a physical observer. This means that horizons
are not entirely defined with respect to the spacetime itself, and even the most benign
spacetimes such as Minkowski space possess families of observers with horizons.

21.1.1 Event horizons

GKP : Event horizons are ≈ ∂TIP while the particle horizon is ≈ ∂TIF .
In a time-oriented spacetime, the (future) event horizon of an observer with timelike curve
γ is the boundary beyond which any point will never be observed by that observer. This
means that no causal curve from any point q beyond the horizon will be able to reach
any point of γ.
Hence to define the horizon, we will first consider the set of all points that can be observed,
all points q such that J+(q)∩ γ 6= ∅, or in other words, J−(γ). The horizon will then be
the boundary of that set,

EvtHor+(γ) = ∂J−(γ) (21.1)

In a similar manner, we will define the past event horizon, comprised of all points that
can never be influenced by the observer γ. It can be easily shown to be

EvtHor−(γ) = ∂J+(γ) (21.2)

The set of future and past event horizons may be disconnected, in which case we say that
every connected component of that set is an individual horizon.

Proposition 21.1. If for two timelike curves γ1, γ2, we have that for any p ∈ γ1 and
q ∈ γ2, I+(p) ∩ γ2 6= ∅ and I+(q) ∩ γ1 6= ∅, then

EvtHor(γ1) = EvtHor(γ2) (21.3)

Proof. It suffices to show that the two sets defined by {q|J+(q)∩ γ1,2 6= ∅} are identical.
If this is true for the first observer, then there is a future-directed causal curve from q
that intersects γ1. If we call this intersection point p, by our assumptions, we have that
there exists a future-directed timelike curve from p to a point r of γ2. From the properties
of timelike curves,

q ≤ p, p� r → p ≤ r (21.4)

Hence the two observers share the same event horizon.
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This will allow us to define the event horizon of entire subsets of the spacetime for some
given class of observers.

Example 21.2. Rindler observers in Minkowski space possess an event horizon, called
the Rindler horizon.

Proposition 21.3. In an asymptotically flat spacetime, the horizon for an observer going
from i− to i+ is ∂I−(I +)

show that if a particle passes a future horizon, it never leaves it, and if it passes a past
horizon, it has never been outside of it.

21.1.2 Black holes

Definition 21.4. In an asymptotically flat spacetime, a black hole is the remainder of
the spacetime minus the past of future null infinity

M\ I−(I +) (21.5)

A black hole corresponds to a region where no particle can escape to infinity.
We have similarly the definition of a white hole

Definition 21.5. In an asymptotically flat spacetime, a white hole is the remainder of
the spacetime minus the future of past null infinity

M\ I+(I −) (21.6)

Boundary of black and white holes are horizons???

21.1.3 Particle horizon

21.1.4 Non-local horizons

Particle horizon : E+(p) for an observer at p

21.2 Trapped surfaces

spacelike surface of co-dimension two
Embedding

Φ : S →M (21.7)

in coordinates :

xµ = Φµ(ya) (21.8)

x coordinates on M, y coordinates on S.
Pushforward of ∂a ∈ TS to vectors of TM

ea = Φ∗(∂a)→ eµa =
∂Φµ

∂λa
(21.9)

First fundamental form γ:
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γ = Φ∗g → γab(λ) = g|S(eA, eB) = gµν(Φ(λ))eµae
ν
b (21.10)

S spacelike : γ Riemannian.

TpM = TpS ⊕ TpS⊥ (21.11)

Definition 21.6. A future (resp. past) closed trapped surface is a closed spacelike surface
with an area that decreases locally along any possible future (resp. past) direction.

Causal orientation of ~H :
↓ : past-pointing timelike ↘ or ↙ : past-pointing null (~k±) ← or → : spacelike · :
vanishes ↗ or ↖ : future-pointing null ↑ : future-pointing timelike
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22 Topology change and Lorentz cobordism

Topology change corresponds to the notion of the topology of space changing between
two moments. The basic idea being that we have a topology change if we have two
boundaryless achronal spacelike hypersurfaces that are not diffeomorphic. To make this
rigorous, we will have to use the notion of cobordisms.

22.1 Cobordisms

A cobordism is an n-dimensional manifold with boundaries with two (n− 1)-dimensional
manifolds as boundaries Σ1 and Σ2.
Lorentz cobordism : (M, v) is a Lorentzian manifold with boundaries M and a vector
field v such that ∂M = Σ1 t Σ2 and v is interior normal on Σ1 and exterior normal on
Σ2.
M1, M2 are spacelike hypersurfaces
M is a ”cutout” of a larger spacetime along Σ1 and Σ2. We can extendM into a manifold
without boundaries
Example of non-trivial Lorentz cobordisms :
Trouser spacetime : topology S2 \ (D2 tD2 tD2), cobordism M1 = S1, M2 = S1 t S2
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23 Continuous metrics

For most of this part, we have assumed the metric to be smooth, or at least C2.
Theorems if the metric is C0.
No convex normal neighbourhood if not C1,1

23.1 Causality

Definition 23.1. A curve is said to be locally uniformly timelike if there is a smooth
Lorentz metric ǧ < g such that ǧ(γ′, γ′) < 0

Definition 23.2. The chronological future Ǐ+
g (U, V ) is the set of locally uniformly time-

like curves starting at p ∈ U and ending at q ∈ V .

Causal bubbles
Causally plain
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24 Exotic spacetimes

As we’ve seen in the chapter on manifold, it is possible for a single manifold to have more
than one smooth structure. This will lead to important differences in the properties of a
spacetime.
While it is not a perfectly rigorous definition, we will say that a spacetime is exotic
if its smooth structure is not the standard one (the lack of rigor is that we cannot
specify for every manifold which one is standard). In other words, if we have a family of
homeomorphic manifolds with non-diffeomorphic smooth structures, if one of them can
be called the standard smooth structure, the others will be exotic.

Proposition 24.1. There are no exotic spacetimes for n < 4

24.1 Exotic R4

The most well-known spacetime example is to use one of the so-called fake R4, noted R4
Θ,

as it is the only example of Rn with more than one smooth structure and also happens
to be of the dimension of physical space.

24.1.1 Construction of exotic R4

Theorem 24.2. Any open 4-manifold M with π1(M) = 0, H2(M) = 0 and end collared
(topologically) by S3 × R is homeomorphic to R4.

24.1.2 Properties

Definition 24.3. A manifold R4
Θ is called small if it can be smoothly embedded as an

open subset of R4. It is called large otherwise.

Example : Donaldson-Freeman R4, noted R4
DF

Proposition 24.4. R4
Θ has the tangent bundle R8.

Proposition 24.5. R4
Θ is the product R× R3 without the product topology.

To convey the different topology, we will write it as R×Θ R3

Proposition 24.6. There’s no geodesically complete Riemannian metric on R4
Θ with

R ≤ 0.
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25 Non-Hausdorff manifolds

For various reasons, pertaining to either extensions of spacetimes, causality, quantum
mechanics or metaphysics, spacetime manifolds are sometimes allowed to not obey the
Hausdorff property.

25.1 Properties of non-Hausdorff manifolds

[REMEMBER TO CHECK ALBERTO S. CATTANEO FOR VECTOR FIELDS]

[If M is Hausdorff and second-countable, so is TM If an atlas is second countable Haus-
droff so is its maximal atlas] [example of a non-Hausdorff manifold with a non-closed
compact set] [a non-Hausdorff manifold Q need not admit any nonconstant C1 functions
or one-forms (Wazewski [59]; [34]).] [ A one dimensional manifold of class Cr is regular if
any germ of a Cr function at any point q is the germ at q of a global Cr function. Every
Hausdorff manifold is regular.

From Haefliger and Reeb : A regular, simply connected, one dimensional manifold of
class Cr admits a Cr function with nowhere vanishing differential. ] [An oriented one
dimensional manifold of class Cr which is regular and has at most finitely many double
branch points (and no multiple branch points) admits a nowhere vanishing differential
one-form of class Cr−1.

Proof: Fix an orientation, let pi, qi all pairs of branch points (pi, qi). For every i we
choose an open neighbourhood Ui of pi and an orientation preserving Cr diffeomorphism
hi : Ui → I = (−1, 1). By regularity, we can assume that hi extends to a Cr function
hi : M → R, the extended function has non-zero derivative at qi. Thus θi = dhi is a
non-vanishing one-form of class Cr−1 in an open connected neighbourhood Vi of the pair
(pi, qi). We may assume that the closures V̄i are pairwise disjoint.

Choose a smaller compact neighbourhood Ej ⊂⊂ Vj of (pi, qi) such that Vi ⊂ Ei is a
union of finitely many segments, none of them relatively compact in Vi. Set V =

⋃
Vi,

E =
⋃
Ei, thenM0 = M\E is an open, one dimensional, paracompact, oriented Hausdorff

manifold, hence a union of open segments and one-spheres. Any one-sohere in M0 is a
connected component of M . Choosing a non-vanishing one-form on it (in the correct
orientation class) does not affect the choices that we shall make on the rest of the set.
We do the same on any open segment of M0 which is a connected component of M .

Open segments ofM0 which intersect at least one of the sets Vi\Ei. Choose such a segment
J and an orientation preserving parametrization φ : I → J . I ′ = {t ∈ I|φ(t) ∈ V }, then
I ′ consists of either one or two subintervals of I, each of them having an endpoint at −1
or +1. Each of these subintervals is mapped by φ onto a segment in some Vj \Ei (other
possibilities would require a branch point of M0 but it is Hausdorff)

Consider the case where I ′ = I0 ∪ I1 where I0 = (−1, a), I1 = (b, 1) for a pair of points
−1 < a ≤ b < 1. Let j and l be chosen such that φ(I0) ⊂ Vj, φ(I1) ⊂ Vl (we might
have j = l). Note that φ(a) is an endpoint of V (j) and φ(b) is an endpoint of Vl. Then
φ∗θj = d(hj ◦ φ) resp φ∗θl = d(hl ◦ φ) are non-vanishing one-forms on I0 resp. I1, both
positive with respect to the standard orientation of R. Choose a one-form τ on (−1, 1)
which agrees with the above forms near the respective end points −1 and +1 (obviously
such a τ exists). Then (φ−1)∗τ is a one-form on J = φ(I) ⊂ M0 which agrees with θj in
a neighbourhood of Ej and with θl in a neighbourhood of El. Similarly we deal with the
case that J intersects only one of the set Vj. Performing this construction for each of the
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finitely many segments J ⊂ M0 which intersect V we obtain a non-vanishing one-form
on M .
]

25.2 A few non-Hausdorff manifolds

Since the Hausdorff property is preserved under homeomorphism, and Rn is itself Haus-
dorff, any coordinate chart Uα = φ−1

α (Oα) of a manifold will itself be Hausdorff. Meaning
that any non-Hausdorff manifold will get this property from its transition maps (any
non-Hausdorff manifold will then have at least two coordinate charts).
A common method to generate non-Hausdorff manifolds from this is the use of a gluing
function, where given two manifolds M1 and M2, we define the gluing function

φ : A
o
⊂M1 → B

o
⊂M2 (25.1)

Proposition 25.1. If the gluing function φ is a Ck homeomorphism, the atlas A =
A2 ∪ A2 defines a Ck manifold, with the transition functions between A1 and A2 being

τα1α2 = (25.2)

Proposition 25.2. The glued manifold is equivalent to M = (M1tM2)/ ∼, with p1 ∼ p2

if p2 = φ(p1).

In particular, we can take the disjoint unions of identical copies of the same manifold

MA =
⊔
i∈A

Mi =
⋃
i∈A

{i} ×M (25.3)

And then glue them along an open set S ⊂ M with the identity function {i, p} =
φij({j, p}). We then get

Theorem 25.3. The manifold M ′ = MA/ ∼S is not Hausdorff if S 6= M .

Proof. If we consider the points on the boundaries ∂Si, then

Gluing a manifold to itself
With those methods, we can define the following useful examples.

25.2.0.1 The line with two origins

The line with two origins corresponds to the case where A = {1, 2} and S = R\{0}, with
boundary point ∂S = {0}. It will be noted R÷ in this book. It has the manifold structure
given by the charts (R1, φ1 = Id), (R2, φ2 = Id), with the overlap R1 ∩ R2 = R \ {0} and
transition map τ12 = IdR1∩R2 .

•
•
0

0∗

Figure 10: Representation of the line with two origins

The two adjacent points, {1} × {0} ∈ R1 and {2} × {0} ∈ R2, are generally written as 0
and 0∗.
The identification of adjacent points just give us the usual real line R.
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25.2.0.2 The splitting real line

The splitting real line is the gluing of two copies of the real line, with S = {x|x < 0},
and boundary point ∂S = {0}. It will be noted RY in this book. It has the topology
given by the atlas (R1, Id1), (R2, Id2)
The identification of adjacent points give us a Y -shaped topological space, that is Haus-
dorff but not a manifold.

25.2.0.3 The noose

The noose, noted Rϙ, is the gluing of the real line with itself, with the identification x ∼ y
if x = −y for x, y ∈ (∞,−1) ∪ (1,∞).
It is described by the coordinate patches O1 = (−1,∞) and O2 = (−∞, 1), with the
overlap ϕ1(U1 ∩ U2) = (1,∞) and ϕ2(U1 ∩ U2) = (−∞,−1), along with the transition
maps τ12 = τ21 = −x on the overlap.

Proposition 25.4. The noose manifold isn’t orientable.

Proof. Since we only have two charts, then we just need the Jacobian of τ , which is
simply −1.

The lack of orientability can be seen fairly easily by trying to define a volume form on
the manifold, since any nowhere vanishing vector field will fail to properly join up on the
overlap. This is a peculiarity of non-Hausdorff manifolds : they may fail to be orientable
even in one dimension. This gives us the occasion of seeing how the lack of orientability
affects the structure of the tangent bundle, since it is just a 2-manifold. As we know,
the tangent bundle fails to be trivial if the manifold isn’t orientable. For the noose, the
tangent bundle is the manifold defined by the topology

x (25.4)

25.2.0.4 The feather

The feather is constructed from the disjoint union of a continuum of copies of the real
like ⊔

x∈R

{x,R} (25.5)

with the identification px1 ∼ px2 if for p1 = {x1, y1}, p2 = {x2, y2}, we have
Real line splitting at every point
It should be noted that splitting manifolds can be represented as actual splits, but it
should be remembered that at branching points, there are no neighbourhoods containing
points from both branches, unlike for the wedge sum of two lines.

25.2.1 Topological properties

Despite not being separated, non-Hausdorff manifolds still inherit from their locally Rn

structure the structure of a T1 space, that is, for p, q ∈M , there exists a neighbourhood
Up, Uq with Up ∩ Uq 6= ∅.

Theorem 25.5. Every manifold M is T1 (from ”Non metrizable manifold”).
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Proof. Take any p, q ∈ M , p 6= q, with a coordinate patch U 3 p. If q /∈ U , then we
are done. If q ∈ U , consider the points φ(p), φ(q) in Rn. Since Rn is itself T 1, there is
an open set O ⊂ Rn that contains φ(p) but not φ(q). Hence φ−1(O) contains p but not
q.

The main difference between Hausdorff manifolds and non-Hausdorff manifolds is the ex-
istence of points with overlapping open sets. This is expressed by the notion of adjacency.

Definition 25.6. For a cardinal number α, p ∈M is α-adjacent to q ∈M (noted p�α q)
if for each neighbourhood U and V of p and q, we have Card(U ∩ V ) ≥ α. If α = 1, we
also say that p is adjacent to q, and it is noted p � q.

p�q means that there is at least a single point in common with every open neighbourhood
of both p and q. If p is not adjacent to q, we say that p is apart from q.

Proposition 25.7. � is reflexive and symmetric, but not transitive.

Proof.

• Reflexive : In two open neighbourhoods U1, U2 3 p, we always have p ∈ U1 ∩ U2,
hence p � p.

• Symmetric : by the commutativity of the intersection.

• Not transitive : If p � q and q � r, we have for all open neighbourhoods Up 3 p,
Uq 3 q, Ur 3 r, Up ∩ Uq = Upr and Uq ∩ Ur = Uqr, both non-empty sets.

Hence � is a tolerance relation.
A point is called regular if there are no adjacent points besides itself. Otherwise it is
singular. The number of points adjacent to a singular point is the singularity number.
Y N
M is the set of all points x ∈M such that for y ∈ N , x � y.

Proposition 25.8. If p � q, then there is no coordinate patch containing p and q.

Proof. As the Hausdorff property is preserved by homeomorphism, and Rn is Hausdorff,
Uα = φ−1

α (Oα) is Hausdorff, so no points in it are adjacent.

Theorem 25.9. For a gluing of identical copies of a manifold along a set S, the set of
boundary points ∂S of S are all adjacent in MA/ ∼S.

Proof.

Corrolary 25.1. If S has a non-empty boundary, the gluing manifold will be non-
Hausdorff.

It is possible to construct a paracompact non-Hausdorff manifold that isn’t second-
countable, simply by considering a disjoint union of an uncountable number of copies
of R before identifying x ∈ R, x 6= 0. Any basis will require at least one open set around
each 0, which will require at a basis with the same cardinality.

Proposition 25.10. A convergent sequence (xn) in a Hausdorff space has a unique limit.
This isn’t necessarily true for non-Hausdorff manifolds
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Proof. Suppose we have

lim
n→∞

xn = p

lim
n→∞

xn = q

with p 6= q. By the Hausdorff property, there are two neighbourhoods U and V such that
p ∈ U and q ∈ V and U ∩ V = ∅.

By the definition of convergence, for a N large enough, it should be that for all n ≥ N ,
xn ∈ U and xn ∈ V , which contradicts the fact that their intersection is empty.

Theorem 25.11. If a manifold constructed by gluing Hausdorff manifolds has a contin-
uously extendable gluing, it has non-unique limits.

While not all non-Hausdorff manifolds violate the uniqueness of sequence limits, the ones
we will be concerned with will, making it so that analysis cannot be defined globally
on those manifolds. Many other properties usually taken for granted for manifolds will
likewise fail (in particular, they are not metrizable).

”Every manifold that is defined as a subset of Rn by the implicit function theorem inherits
from Rn the property of being Hausdorff and second countable.”

”Let F : N →M be an injective immersion. If M is Hausdorff, then every point p in N
has an open neighborhood U such that F |U is an embedding.”

Proposition 25.12. If p � q, then for any sequence {pi}, lim pi = p, we have lim pi = q.

Proof.

Theorem 25.13. For any continuous function f on a non-Hausdorff manifold M , if p� q
then f(p) = f(q)

Proof. By the definition of continuity, we have that for every point p ∈M ,

lim
x→p

f(x) = f(p)

Since we also have that any sequence convering to q will also converge to q,

lim
x→p

f(x) = lim
x→q

f(x) = f(p) = f(q) (25.6)

Definition 25.14. A bifurcate curve is a family of curves γi defined on I such that either

γi([0, c)) = γj([c, 1]), γi([0, c]) 6= γj((c, 1]) (25.7)

or

γi([0, c]) = γj((c, 1]), γi([0, c)) 6= γj((c, 1]) (25.8)
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25.2.2 Structures on non-Hausdorff manifolds

Theorem 25.15. Non-Hausdorff manifolds are not metrizable.

Proof. By the Nagata-Smirnov metrization theorem, a topological space X is only metriz-
able

Lemma 25.1. Non-Hausdorff manifolds do not have bump functions for every open
neighbourhoods.

Proof. If we consider two adjacent points p, q, there exists two different open sets in the
manifold atlas Up, Uq such that q /∈ Up and p /∈ Uq. For any bump function f defined on
Up, we have by continuity that f(p) = f(q), hence the function does not have compact
support in Up.

Theorem 25.16. Non-Hausdorff manifolds do not admit a partition of unity.

Proof.

Lemma 25.2. A manifold M is Hausdorff if and only if the diagonal

∆M = {(p, p) ∈M ×M} (25.9)

is closed in M ×M .

Proposition 25.17. The vector flow of a vector field is not unique for a given vector
field X.

Proof. Any curve passing via a singular point of the manifold can go through any of the
adjacent point If γ : I →M and γ′ : J →M are two curves, then the set

K = {λ ∈ I ∩ J |γ(λ) = γ′(λ)} (25.10)

set where the two curves agree is closed in I ∩ J if M is Hausdorff, as it is the preimage
of ∆M under the map λ→ (γ(λ), γ′(λ).
If γ, γ′ are integral curves of X, then K is open in I ∩ J . K is a clopen interval, so it
must be all of I ∩ J , so uniqueness.

Example 25.18. For R:, we have two coordinate charts φ0({0, x}) = x and φ1({1, x}) =
x, with φ0 ◦ φ−1

1 = IdR\{0}. The constant vector field ∂x defines a vector field on M , and
γ0(λ) = φ−1

0 (t+ 1) and γ1(λ) = φ−1
1 (t+ 1) are both integral curves of X, with γ0(0) = 0

and γ1(0) = 0∗.

Proposition 25.19. The distance function generated by a Riemannian metric tensor is
a pseudometric, and it does not generate the manifold topology.

Proof. Pseudometric : if p � q show that d(p, q) = 0 Not generate the topology : for two
adjacent points, the distance is identical : always part of the same open ball, but not
part of the same manifold chart

Bifurcate curves, continuous extendible spacetimes
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25.2.3 Y -manifolds and H-submanifolds

To work with non-Hausdorff spacetimes, we will generally have to use Hausdorff subman-
ifolds, called H-manifolds :

Definition 25.20. An open submanifold V of a Y -manifold W is called a H-manifold if
V is Hausdorff and it is not the proper subset of any open Hausdorff submanifold of W

Any H-submanifold of W is paracompact and metrizable.

Theorem 25.21. The set H of all H-submanifolds of a Y -manifold W is an open
covering of W .

Proof. Take Ω the set of all open Hausdorff submanifolds of W . We define the order
relation < on Ω × Ω to be, for U, V ∈ Ω, U < V if U is a proper subset of V . Then
< obeys the conditions that either U < V or V < U , and if U < V and V < X, then
U < X. < is then a strict partial order on Ω.
If we take a point p ∈ W , and some Hausdorff neighbourhood of p U ∈ Ω, {U} is a
non-empty subset of Ω. By the maximal principle, there’s

Theorem 25.22. if p, q ∈M and p�q, then for every sequence (xn) such that limn→∞ xn =
p, we also have limn→∞ xn = q

Proof. if the sequence (xn) converges to p, this means that in an open set U of the chart
containing p, there is an N such that for all n > N , φU(xn) will be within an open ball of
diameter ε for any ε > 0. As the intersection of any neighbourhood of p and q will never
be empty, we can pick the smallest open ball that will fit around both p and q (since the
balls define the Rn topology). [PROVE THAT IF ε FOR Up THEN THE BALL WILL
BE SMALLER OR EQUAL IN Uq] [MAYBE USE limx→p f(x) = y for every sequence
(xn), lim(xn) = p→ lim f(xn) = y]

Theorem 25.23. Non-Hausdorff manifolds do not admit bump functions with compact
support in every open set.

Proof. The line with two origins : open set (−1, 0) ∪ {0} ∪ (0, 1), by continuity of the
bump function f(0) = f(0∗) and 0∗ /∈ supp(f)

Maybe try proving equivalence of non-Hausdorff manifolds and branching manifolds under
the equivalence relation of their adjacent points

Definition 25.24. A branching manifold of class Ck is a metrizable space K with the
following conditions :

• There’s a covering of K by closed subsets {Ui},
⋃
i Int(Ui) = K

• For every Ui, there’s a finite collection of closed subsets of Ui, {Dij}, such that⋃
j Dij = Ui

• For each i, there’s a map πi : Ui → Dn
i , Dn

i a closed n-disk of class Ck, with πi|Dij
a homeomorphism onto Dn

i .

• There’s a collection of diffeomorphisms {ai1i2} of class Ck such that πi1 = αi1i2 ◦πi2
on Ui1 ∩ Ui2 . They obey the cocycle conditions, ai1i2ai2i3 = ai1i3 and aii = Id

Non-Hausdorff, completely separable, n-dimensional, Ck manifold : Y-manifold
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25.3 Non-Hausdorff spacetimes

Define tensors and such by defining them on open Hausdorff subsets of the manifold, then
enforcing that they agree on their intersections (Same condition as the local trivializa-
tion?)
Maximal extension of the Taub-NUT spacetime
extension of Rindler space

25.4 Branching spacetimes

The idea of branching spacetime is to have a spacetime manifold with branching points at
individual events. To perform this in a causal way (such that the branching is ”caused”
by a single point), for a point p ∈ M, we cut J̄+(p) out of the manifold and glue in its
place n copies of J̄+(p). Hence for such a manifold, all points in each copy of ∂J+(p) are
adjacent.

Proposition 25.25. Every branching spacetime contains bifurcate timelike curves.

Proof.

Definition 25.26. (W,≤) is a branching spacetime model if, for a non-empty set W and
a partial order ≤, we have

1. ≤ is dense

2. ≤ has no maximal element

3. Every lower bounded chain in W has an infimum in W .

4. Every upper bounded chain in W has a supremum in every history that contains
it.

5. For any lower bounded chain O ∈ h1 − h2, there exists a point e ∈ W such that e
is maximal in h1 ∩ h2 and for all e′ ∈ O, e < e′.
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Part II

General relativity
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Now that we have defined what a spacetime exactly is, we can study the interaction of
this spacetime with matter and with observers.
recapitulate what a spacetime is with what we have learned so far :

• A Lorentzian manifold, which is connected, Hausdorff, paracompact, second count-
able , of finite dimension n ≥ 2 and if of even dimension and compact, of Euler
characteristic 0.

• A smooth structure A.

• A Lorentz metric g defined on that manifold.

• A connection ∇, usually assumed torsion-free and metric-compatible.

• If the spacetime is orientable, a nowhere-vanishing n-form

• If the spacetime is time-orientable, a non-vanishing timelike vector field τ to define
a time-orientation.

• If the spacetime is space-orientable, a non-vanishing spacelike (n− 1)-form.

defined up to equivalence by diffeomorphisms that preserve the orientations. This will be
the basis that all metric theories of gravity will use.
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26 The Einstein field equations

The Einstein field equations connect the spacetime metric with the matter fields upon it.
It can be expressed in its simplest form in terms of the Einstein tensor Gµν by

Gµν + Λgµν = κTµν (26.1)

or, expressed in terms of the Ricci tensor,

Rµν −
1

2
Rgµν + Λgµν = κTµν (26.2)

with κ the Einstein constant,

κ =
8πG

c4
(26.3)

≈ 2.076 579× 10−43 s2 m−1 kg−1 (26.4)

The tensor T is a rank (0, 2) tensor called the stress-energy tensor, or energy-momentum
tensor, which depends on the matter fields φi(x) and their derivatives ∇φi(x).
Taking the trace of the equation gives us the following equality

1

2
R +

n

2− n
Λ =

1

2− n
(κT ) (26.5)

By multiplying it by gµν and adding it to the Einstein field equation, we obtain

Rµν +
2

2− n
Λgµν = κ(Tµν +

1

2− n
T ) (26.6)

In particular, for n = 4, this gives

Rµν − Λgµν = κ(Tµν −
1

2
T ) (26.7)

This variant of the EFE has the benefit of showing easily that, in the absence of a
cosmological constant, a vacuum solution Tµν = 0 implies immediatly that Rµν = 0, and
trivially R = 0.
The content of the stress energy tensor will be explored later on, where we will give two
different ways to find a form of it.

26.0.1 Local conservation of energy

One important reason behind the form of the Einstein field equation is that the local
conservation of energy is built in the theory, as the second Bianchi identity implies that

∇µG
µν = 0 (26.8)

which, along with the metric-compatible connection for the cosmological term, implies

∇µT
µν = 0 (26.9)

This corresponds to the local conservation of the stress-energy tensor, as is to be expected.
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26.1 Coordinate fixing

The Einstein field equations give us (n2 +n)/2 equations, but as the energy conservation
imposes that ∇µ(Gµν+Λgµν) = 0, imposing n relations on them, only (n2−n)/2 are truly
independent. Since we have (n2 +n)/2 metric components to solve for, the equations are
underdetermined.
This is due to the diffeomorphism invariance of general relativity. If we use the vacuum
Einstein field equations without coordinates, G = 0, even for the same initial conditions,
we can have the same metric tensor expressed in different coordinates, giving rise to
different components. It can easily be seen by considering a diffeomorphism of the form
f = Id for t < t0 and f 6= Id for t > t0, in which case for some given identical initial
conditions for t < t0, we will have different possible evolutions of the metric components.
To fix this down, we need to impose some conditions on the coordinates of the manifold.
Fix the diffeomorphism and the tetrad rotation

26.1.1 Harmonic gauge

A commonly used coordinate gauge is the harmonic gauge, due to its simplicity.

Γρµνg
µν = 0 (26.10)

∂µ(gµν
√
−g) = 0 (26.11)

26.2 Uniqueness of the field equations

One of the motivation for the Einstein field equations is to consider the most general
form of equations that we would get for a set of properties that would fit the theory.
At its core, for a metric theory of gravity, we want a differential equation of the metric
tensor g. We will consider two main terms of that equation, the ”kinetic” term Dµν [g],
and a dynamic term that will link it to other matter fields Tµν [g]. The equation will be

Dµν [g] = Tµν [g] (26.12)

The conditions we want to obey generally are

• The differential equation will depend at most on the second derivatives of g.

• The stress energy tensor obeys local conservation of energy ∇νT
µν = 0

The second condition gives us immediatly

∇νT
µν = ∇νD

µν = 0 (26.13)

If we restrict our attention for now to n = 4, we can get Lovelock’s theorem

Theorem 26.1. If we want the tensor Dµν to only contains derivatives of gµν up to
second order and obey the local conservation of energy, then in four dimensions, the class
of tensors will be

Dµν [g] = αGµν + βgµν (26.14)

Proof.
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27 The Lagrangian formalism

27.1 Lagrangian mechanics

Lagrangian mechanics is the fundamental principle at the core of most classical physics,
and will still be fairly important in quantum theory later on.

The basis of the Lagrangian formalism is the action, a map from the physical configuration
of the system to the reals.

Definition 27.1. An action functional is a functional from the jet bundle of fields J∞E
over a region of spacetime U ∈ τ(M) to the real numbers

S : J∞E × τ(M)→ R (27.1)

For most realistic systems, this will actually just be a map from J1E to R, as the action
typically doesn’t include any field derivatives beyond the first. In a more physical way, we
will usually write the action for a family of fields φi over an open set U as S[φi,∇φi;U ].

Maps a region of spacetime and section of a vector bundle to R
The action functional is usually expressed as the integral over the domain U of a 0-form,
the Lagrangian density L .

S[φi,∇φi;U ] =

∫
U

L (φi,∇φi)dµ(g) (27.2)

We can also define the n-form Lagrangian L as

L = L ε (27.3)

with ε the volume n-form, in which case the action can simply be expressed as

S[φi,∇φi;U ] =

∫
U

L(φi(x),∇φi(x)) (27.4)

The fundamental equation of Lagrangian mechanics is given by Hamilton’s principle ,

δS

δφi
[φi,∇φi] = 0 (27.5)

Proposition 27.2. If an action functional has vanishing surface terms, it will be invariant
under the addition of a divergence∫

D

L dµ[g] =

∫
D

(L +∇µX
µ)dµ[g] (27.6)

Proof. ∫
D

∇µX
µdµ[g] = (27.7)
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27.1.1 The Euler-Lagrange equations

Hamilton’s principle applied to an action functional given by an integral of some n-form
will give us

δS[φi, ∂µφi]

δφi
[f ] =

∫
D

[
∂(L

√
−g)

∂φ
(φ, ∂µφ)− ∂µ

∂(L
√
−g)

∂(∂µφ)
(φ, ∂µφ)]f(x)dnx

+

∫
∂D

∂(L
√
−g)

∂(∂µφ)
dn−1x (27.8)

We will generally want the boundary term to vanish, either by constraining the class of
solutions that we consider, the domain of integration or by the addition of counterterms.
In this case, the Hamilton principle gives us∫

D

[
∂(L

√
−g)

∂φ
(φ, ∂µφ)− ∂µ

∂(L
√
−g)

∂(∂µφ)
(φ, ∂µφ)]f(x)dnx = 0 (27.9)

which allows us to define the variation of the action as a function

δS

δφ
[φ, ∂µφ](x) =

∂(L
√
−g)

∂φ
(φ, ∂µφ)− ∂µ

∂(L
√
−g)

∂(∂µφ)
(φ, ∂µφ) (27.10)

Hamilton’s principle will then be true for all test functions if the variation of the action
always vanishes.

∂(L
√
−g)

∂φ
(φ, ∂µφ)− ∂µ

∂(L
√
−g)

∂(∂µφ)
(φ, ∂µφ) = 0 (27.11)

To shorten the notation somewhat, we’ll define the Lagrangian scalar as L = L
√
−g,

we’ll denote ∂µφ by φ,µ and drop the arguments of the Lagrangian.

∂L

∂φ
− ∂µ

∂L

∂φ,µ
= 0 (27.12)

This is the Euler-Lagrange equation. If in particular, φ is not related to the metric
components, we will have

∂L

∂φ
− ∂µ

∂L

∂φ,µ
= 0 (27.13)

27.2 Constraints

By the chain rule, the Euler-Lagrange equations gives us

(∂µ∂νφ)
∂L

∂φ,µ∂φ,ν
=
∂L

∂φ
− ∂µφ

∂L

∂φ∂φ,µ
(27.14)

det
∂L

∂φ,µ∂φ,ν
= 0 (27.15)
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27.3 Common functional derivatives

Some terms will crops up quite frequently for the Lagrangians of various theories of
gravitation and matter. Here are a few of them.

27.3.1 Derivatives with respect to the metric

27.3.1.1 Constant terms

S[g] =

∫
D

C
√
−gdnx (27.16)

As this does not depend on the derivatives of the metric, there will be no surface terms,
and we can consider directly the functional derivative as a function.

δS[g]

δgµν
= C

∂
√
−g

∂gµν
=

C√
−g

∂ det(g)

∂gµν
(27.17)

27.3.1.2 Terms depending only on the metric tensor

δ

δgµν

∫
dnxT µνgµν

√
−g (27.18)

27.3.1.3 Terms depending on the Ricci scalar

There are two important variations of the Ricci scalar that we need. First is the Ricci
scalar as a function of the metric tensor

δ

δgµν

∫
dnxR[g]

√
−g (27.19)

27.3.2 Derivatives with respect to a scalar field

27.4 The Einstein-Hilbert action

The full form of the gravitational action to obtain the Einstein field equations is the

S[g] = SEH + SGHY + SM

=
1

2κ

∫
D

Rdµ(g)− 1

κ

∫
∂D

Tr(K̄)V ol(∂D) +

∫
∂D

ω̄ij ∧ η
j
i + SM [g]

SEH being the Einstein-Hilbert action, which encapsulates the dynamic of the gravita-
tional field, SGHY the Gibbons-Hawking-York term, to deal with boundary effects, and
SM the action for the matter components.
The integral is only defined on a specified domain D because unlike for some fields, it is
not guaranteed that SEH converges on the entire spacetime, and the integral may fail to
be defined if the spacetime isn’t orientable. Hence we will use the various counter-terms
to make the action well-defined with respect to boundary terms.
By Hamilton’s principle, we want to have
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δS[g]

δg
= 0 (27.20)

for any domain D the integral is defined on.

27.5 The Noether theorems

A global symmetry of a Lagrangian theory is defined as a transformation that will leave
the action invariant. That is, for an action defined by S[L (φi)], where φi is any quantity
the Lagrangian may depend on (fields, point particles, coordinates, etc), then a set of
functions fi will be a symmetry if we have

S[L (fi(φi))] = S[L (φi)] (27.21)

Since S is an integral of the Lagrangian, a general transformation can leave it invariant
if it adds a divergence to the Lagrangian.

L (fi(φi)) = L (φi) + ∂µf (27.22)

If the symmetry of the action is a Lie group,

Theorem 27.3. Noether’s first theorem :

φi → φi + εijφj (27.23)

L → L + εij∂µΛµ
ij (27.24)

jνij = Λν
ij −

∂L

∂φi,ν
φj (27.25)

Proof.

177



28 Alternative formulations of general relativity

Within general relativity itself, there are a few different formalism variant which can be
useful for solving the field equations in specific circumstances.

28.1 Palatini formulation and second order

formulation

The Palatini formulation is not strictly a simple alternative formalism (it is the basis for
the metric-affine theories of gravity), but with the appropriate constraint, it is equivalent
to it. Its action is

S[e, ω] =
1

2κ

∫
εabcd(e

a
µ ∧ ebν ∧Rbc − 1

12
Λ) (28.1)

28.2 Newman-Penrose formalism

The Newman-Penrose formalism is one adapted for general relativity in four dimensions
where the equations are projected on a set of ”null” vectors.

Pick a frame field, Pick two null vectors l, n such that lana = −1 (same orientation).
Complex null vector m from two orthogonal spacelike vectors x, y

m =
1√
2

(x+ iy) (28.2)

such that mam̄a. Then we consider the tetrad of vectors {l, n,m, m̄}

lala = nana = mama = m̄am̄a = 0 (28.3)

lana = lan
a = −1, mam̄a = mam̄

a = 1 (28.4)

lam
a = lam̄

a = nam
a = nam̄

a = 0 (28.5)

gµν = ηae
a
µe
b
ν (28.6)

28.2.1 Derivatives

With that local basis, we can also define the covariant derivatives

D = ∇l, ∆ = ∇n, δ = ∇m, δ̄ = ∇m̄ (28.7)

This lead us to defining the spin coefficients
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28.2.2 The field equations

28.3 Self-dual formalism

Given a rank 2 tensor T , we define its dual as

∗T =
1

2
(T ) (28.8)

Ashtekar variables

28.4 Plebański formalism

28.5 Spinor general relativity

Define the EFE on the spinor tensor bundle
It is possible to express spinor general relativity in the language of quaternions as well [27]
thanks to the relation between quaternions and the Clifford algebra.
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29 The stress-energy tensor

From the Lagrangian formulation of general relativity, we have that the stress-energy
tensor has the general form

Tµν = −2
1√
−g

δSM
δgµν

(29.1)

Properties from the Einstein tensor : Tµν = Tνµ, conservation of energy momentum
(local)

∇µT
µν = 0 (29.2)

Scalar field

Tµν = ∇µϕ∇νϕ−
1

2
gµν(g

στ∇σϕ∇τϕ+
m2

~
ϕ2) (29.3)

EM field

Tµν =
1

4π
(FµσFντg

στ − 1

4
gµνFστFαβg

ασgβτ ) (29.4)

29.1 The canonical stress-energy tensor

The canonical stress-energy tensor is the Noether current associated with the variation
of the action under translation.
That is, for the translation xµ → xµ + aµ, the field will transform as

φ(x)→ φ(x+ a) = φ(x) + aµ∂µφ(x) +O(a2) (29.5)

and the action, which is invariant under translation, transforms as

S → S =

∫
L (x+ a)dnx =

∫
(L (x) + aµ∂µL +O(a2)dnx (29.6)

Noether current :

T µν =
∂L

∂(∂µφ)
∂νφ− δµν (29.7)

The various Noether currents are referred to as the energy tensity ρ = T00, the pressure
pi = Tii, the momentum density T0i and the shear stress εijkTij.
Belifante tensor, etc etc
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30 Geodesic deviation and congruence

The effects of gravity from the curvature of spacetime can be best understood by looking
at the effect it has on the motion of geodesics and curves, as this will be kind of effect
we can most readily observe physically.

30.0.1 Geodesic deviation

Geodesic deviation considers the separation of a family of geodesics. This will be helpful
to understand tidal forces in general relativity. Two or more points initially separated
by a distance evolve on the spacetime and we analyse the evolution of their distance as
time goes on.
To represent this situation, we consider a one-parameter family of geodesic curves, γs(λ).
A choice of n value of s will give us the geodesic representing the trajectories to look at.
As usual, the tangent vector is

Uµ =
d

dλ
xµs (λ) (30.1)

But we will also be interested by the deviation vector :

Sµ =
d

ds
xµs (λ) (30.2)

Relative velocity of geodesics :

V µ = Uρ∇ρS
µ (30.3)

Relative acceleration :

Aµ = Uρ∇ρV
µ (30.4)

Aµ = Rµ
νστT

νT ρSσ (30.5)

30.0.2 The Raychaudhuri equation

A more general method to consider tidal forces is to consider a family of geodesics going
through every point of space.
Open subset U ⊂M, a is a family of curves such that for every point p ∈ U , there is one
curve in the congruence passing through p. Tangents of a congruence defines a vector
field in U and the integral curves of a vector field in U defines a congruence. Smooth
congruence if the vector field is smooth.
Timelike congruence of geodesics, parametrized by proper time τ so that the tangents ξµ

are normalized ξµξµ = −1. The tensor field Bµν

Bµν = ∇νξµ (30.6)

is ”spatial”, ie

Bµνξ
µ = Bµνξ

ν = 0 (30.7)
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For a one-parameter subfamily γs(λ) of the geodesic congruence, with Sµ the deviation
vector, then

LξSµ = 0 (30.8)

Hence,

ξµ∇µS
ν = Sµ∇µξ

ν = Bν
µS

µ (30.9)

B is the failure of S to be parallely transported. It measures the spread, twist and
compression of the congruence of geodesics along their path.
Projection of the metric

hµν = gµν + ξµξν (30.10)

Expansion :

θ = Bµνhµν (30.11)

Shear :

σµν = B(µν) −
1

3
θhµν (30.12)

Twist :

ωµν = B[µν] (30.13)

Bµν =
1

3
θhµν + σµν + ωµν (30.14)

By Frobenius theorem and B being purely spatial, the congruence is hypersurface or-
thogonal iff ωµν = 0

182



31 Energy conditions

The Einstein field equations by themselves does not place any restriction on the class
of metrics allowed, including metrics that are generally considered to be unlikely to be
physical. While the simplest restriction would be to only consider metrics stemming
from actual matter fields, it is rarely clear what class of metrics this would allow overall.
Instead, general conditions on the stress energy tensor itself are considered.

To avoid any complications of the notation, we will consider the cosmological constant
to be part of the stress energy tensor.

κT → κT − Λgµν (31.1)

This is completely equivalent to the usual Einstein field equations, with the simple ad-
dition of a term of the form Tµν = Λgµν (the sign was changed but since Λ is a priori of
arbitrary sign that is not much of an issue), called a lambda vacuum term.

SDEC

DEC

WEC

NEC

AWEC

ANEC

FEC

SECASEC

QFEC

Figure 11: Relations of the energy conditions

31.1 Segre classification of stress-energy tensors

Much in the same way that we can classify the Ricci tensor,

Segre classification [cf Martin-Moruno and Visser]

As we have seen previously, it is possible to classify the Ricci tensor into 4 different
categories in the Segre classification. This in turns gives us a classification of the stress-
energy tensor.

Express T at p with respect to an orthonormal basis {ea}
Type I : corresponds to the A1 Segre type

ρ 0 0 0
0 p1 0 0
0 0 p2 0
0 0 0 p3

 (31.2)
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T ab = ρuaub + p1s
a
1s
b
1 + p2s

a
2s
b
2 + p3s

a
3s
b
3 (31.3)

Eigenvalues {ρ, p1, p2, p3}
Type II : 

µ+ f f 0 0
f −µ+ f 0 0
0 0 p2 0
0 0 0 p3

 (31.4)

T ab = fkakb − µηab2 + p2s
a
2s
b
2 + p3s

a
3s
b
3 (31.5)

Type III : 
ρ 0 f 0
0 −ρ f 0
f f −ρ 0
0 0 0 p3

 (31.6)

T ab = −ρηab3 + f(sa2k
b + kasb2) + p3s

a
3s
b
3 (31.7)

Type IV : 
ρ f 0 0
f −ρ 0 0
0 0 p1 0
0 0 0 p2

 (31.8)

Eigenvalues : {−ρ+ if,−ρ− if, p1, p2}

31.2 A few examples

Fields to consider : free scalar field, free EM field, free spinor field, scalar field with
potential, with curvature coupling

31.3 Classical energy conditions

31.3.1 Null Energy Condition

The null energy condition (or NEC) is the weakest of the classical energy conditions, just
requiring that for every null tensor k, we have

Tµνk
µkν ≥ 0 (31.9)

Type I : ρ+ pi ≥ 0 Type II : µ+ pi ≥ 0, f > 0

31.3.1.1 Violations of the NEC

The NEC is not easily violated by classical field, except by constructing ad-hoc ones such
as phantom fields
It is much more easily violated by quantum effects, such as the Casimir effect, squeezed
states or along domain walls.
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31.3.2 Weak Energy Condition

The weak energy condition : any observer with a timelike tangent ξ measures the energy
of the stress-energy tensor as non-negative.

Tµνξ
µξν ≥ 0 (31.10)

ρ ≥ 0, ρ+ pj ≥ 0 (31.11)

The WEC used to be considered the weakest of all energy conditions, as the requirement
that the energy be positive was considered the minimum anyone could ask for.

Theorem 31.1. The WEC implies the NEC.

Proof. Consider a sequence of timelike vectors converging to a null vector {ξn}, lim ξn = k.
Then we have that if the stress-energy tensor is continuous, limT (ξn, ξn) = T (k, k) ≥
0.

By the perfect fluid expression, a simple counterexample of the NEC implying the WEC
will be a cosmological stress energy tensor T = Λg in Minkowski space, for which
T (∂t, ∂t) = −Λ.

Theorem 31.2. For any energy condition such that Tµνξ
µξν ≥ −b for some positive b,

Violation of the WEC :

31.3.3 Ubiquitous Energy Condition

The ubiquitous energy condition (or UEC) corresponds to the requirement that for every
causal vectors k,

Tµνk
µkν > 0 (31.12)

It trivially implies the weak energy condition, just forbidding the existence of vacuum
spacetimes

ρ > 0, ρ+ p > 0 (31.13)

31.3.4 Strong Energy Conditions

The strong energy condition is defined by what is also referred to as the convergence
condition,

Rµνξ
µξν ≥ 0 (31.14)

So called because it will cause all geodesics to eventually converge (cf. chapter on geodesic
congruences). In terms of the stress energy tensor, this corresponds to

(Tµν +
1

2− n
Tgµν)t

µtν ≥ 0 (31.15)

or, in 4 dimensions,
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(Tµν −
1

2
Tgµν)t

µtν ≥ 0 (31.16)

∀j, ρ+ pj ≥ 0, ρ+
∑
i

pi ≥ 0 (31.17)

Theorem 31.3. The SEC implies the NEC.

Proof. By the same process as with the WEC, we take {tn}, lim t = k, for which, using
the fact that g(k, k) = 0, we have

limTµνt
µ
nt
ν
n = Tµνk

µkν = Rµνk
µkν (31.18)

which is

Theorem 31.4. If the SEC is obeyed, gravity is always attractive.

Proof. cf. Raychaudurah equation

Violation of the SEC :
Classical scalar field :

LM =
1

2
gµν∂µφ(x)∂νφ(x) +

1

2
mφ2(x) (31.19)

Stress energy tensor :

Tµν = ∇µφ∇νφ−
1

2
gµν∇ρφ∇ρφ−

1

2
gµνm

2φ2 (31.20)

31.3.5 Dominant Energy Conditions

The Dominant Energy condition (or DEC) corresponds to the notion that the stress
energy tensor is ”well behaved”, as it both has the flow energy constrained to remain
within the light cone, and obeys the weak energy condition.
This is expressed by the usual condition of the weak energy condition, and that for any
timelike vector ξµ, Tµνξ

µ is a causal vector. Or, in a more compact form, for any two
timelike vectors ξ, χ of the same (local) time orientation,

Tµνξ
µχν ≥ 0 (31.21)

Theorem 31.5. If the stress-energy tensor vanishes on a region S and it obeys the DEC,
then it also vanishes on D+(S).

Proof. cf hawking

Violation of the DEC :

31.3.6 Strengthened Dominant Energy Condition

The Strengthened Dominant Energy Condition (or SDEC) is the limiting case of the DEC
where the flux of energy cannot be null, that is, all energy flow is within the lightcone
itself, and never on its boundary.
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31.3.7 The generic condition

The generic condition is satisfied if every causal geodesic has a point p such that the
tangent u at p satisfies

uµuνu[ρRσ]µν[αuβ] 6= 0 (31.22)

This condition implies that the tidal force is non-zero at p on a causal geodesic, meaning
that every geodesic feels a tidal force at some point in its history, which is generally
considered like a realistic condition in our universe.

31.3.8 Trace Energy Conditions

The trace energy condition, or TEC, corresponds to the requirement of a non-positive
trace for the stress energy tensor

Tµνg
µν ≤ 0 (31.23)

Or in other words,

p ≤ 1

3
ρ (31.24)

While it was historically firmly believed to hold for any realistic matter field, it was
proven [cf Novikov] that this condition can be violated for instance with the matter in
neutron stars.
Argument of von Neumann in Chandrasekhar’s paper ”Stellar configurations with degen-
erate cores”. Proof probably due to considering systems of free particles.

T µµ = (1− n

2
)R (31.25)

so the TEC translates, for every dimension (for n > 2), to R ≥ 0
Subdominant energy condition (cf Bekenstein paper):

|Tµν(gµν + tµtν)| < Tµνt
µtν (31.26)

From the SEC :

(Tµν +
1

2− n
Tgµν)t

µtν ≥ 0 (31.27)

31.4 Quasilocal energy conditions

cf. paper of Geoff Hayward

31.5 The averaged energy conditions

Energy conditions averaged on a causal curve
ANEC : ∫

γ

Tµνk
µkνdλ ≥ 0 (31.28)
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31.6 The quantum inequalities∫
〈Tµνkµkν〉g(t)dt ≥ f(t) (31.29)

31.7 Nonlinear energy conditions

None of the classical energy conditions hold in general for the quantum case, even for
realistic scenarios.

31.7.1 The Flux Energy Condition

The Flux Energy Condition, or FEC, is a weaker version of the DEC, where the WEC is
not assumed. In other words, for the flux F µ = −T µνξρgνρ for any timelike vector ξ, we
have

F µFµ ≤ 0 (31.30)

31.7.2 The Determinant Energy Condition

DETEC

det(T µν) ≥ 0 (31.31)

31.7.3 Trace-of-square Energy Condition

TOSEC

T µνTµν ≥ 0 (31.32)

(〈T µν〉ξν)(〈T στ 〉ξτ )gµσ ≥ 0 (31.33)
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32 Hamiltonian formulation

32.1 Hamiltonian mechanics and general relativity

Given a foliation by Cauchy hypersurfaces Σt of normal nµ and a time function t
Symplectic structure
The purely fiber bundle interpretation of the Hamiltonian for field theory is rather com-
plex, involving the Legendre bundle which, for a bundle Y →M, corresponds to

Π = V ∗Y ∧ (
n−1∧

T ∗M) (32.1)

To simplify matters somewhat we will stay with the ”classical” interpretation of the
Hamiltonian

32.1.1 The Legendre-Fenchet transform

Legendre transform : for a function f : X → R a convex function, X ⊂ Rn a convex
subset, the Legendre transform f ∗ : X∗ → R is

f ∗(x∗) = sup
x∈X

(〈x∗, x〉 − f(x)) (32.2)

(X∗ = {x∗ ∈ Rn| supx∈X(〈x∗, x〉 − f(x)) <∞})
We will note x∗ as p
Properties :
if x(p) maximizes 〈p, x〉 − f(x), then f ∗(p) = px(p)− f(x(p)),

df

dx
= p (32.3)

32.1.2 The Hamiltonian

Legendre transform of the Lagrangian L :
We will denote for any quantity that Ẋ = nµ∂µX
For a matter field with Lagrangian L , the canonical momentum is usually defined as :

π =
∂L

∂(φ̇)
(32.4)

H (φi, πi, t, x) =
∑
i

φ̇iπi −L (φi,∇φi, x) (32.5)

The action is then

S[φi, πi] =

∫
D

[
∑
i

φ̇iπi −H(φi, πi, t, x)]dtdn−1x (32.6)

H =

∫
H dn−1x (32.7)

Hamiltonian field equations :
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φ̇i =
δH

δπi
, π̇i = −δH

δϕi
(32.8)

[DO FUNCTIONAL DERIVATIVES MAKE SENSE HERE]
Lie brackets

32.1.3 Hamiltonian constraint

The Lagrangian may not obey the necessary conditions to perform a Legendre transform.
That is,

∂2L

∂φ̇i∂φ̇j
6= 0 (32.9)

Degenerate or singular Lagrangian

βk(p, q) = 0 (32.10)

H = H0 +
α∑
k=1

vkβ(k) (32.11)

H0 =
∑

φ̇iπi −L (32.12)

φ̇i =
∂H0

∂πi
+
∑

vk
∂βk
∂πi

π̇i = −∂H0

∂φi
−
∑

vk
∂βk
∂φi

Or

φ̇i =
∂H

∂πi

π̇i = −∂H
∂φi

Constraints on the primary restrictions βk :

β̇k = 0 (32.13)

32.1.4 Gauge stuff

If the field is associated to a symmetry

S[φ] = S[f(φ)] (32.14)

L (φ) = L (f(φ)) + ∂µα
µ (32.15)

∂L (φ)

∂φ
(32.16)
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32.2 Hamiltonian of fields on spacetime

32.3 The ADM formalism

The ADM formalism (Arnowitt-Deser-Misner) is the application of the Hamiltonian for-
malism to general relativity.
Link between foliations Xt : Σ→M, Xt(x) = X(t, x), diffeomorphism X : R× Σ→M
Any diffeomorphism f ∈ Diff(M) is of the form f = X ′ ◦ X−1, any two foliations are
related by X ′ = f ◦X
Diffeomorphism invariance is the freedom in foliation choice
If the spacetime is globally hyperbolic with a foliation Σt, unit orthogonal vector to σt is
n, time function t with timelike vector field tµ such that tµ∇µt = 1
Foliation required to be timelike everywhere : −N2 + gµνN

νNµ < 0
Lapse function is nowhere vanishing
Lapse function > 0 : future-directed foliation
Volume element :

(3)εµνρ = εµνρσn
σ (32.17)

Gauss-Codazzi equation
Einstein tensor :

Gµνn
µnν = Rµνn

µnν − 1

2
Rgµνn

µnν

= Rµνn
µnν +

1

2
R

giving us the relation

R = 2(Gµνn
µnν −Rµνn

µnν) (32.18)

(3)g = g|TΣ (32.19)

L =

∫ t2

t1

∫
M

[β((3)R + |K|2 + α)]dµ[(3)g]dt (32.20)

P ab =
δS

δ(3)gab
= (32.21)
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33 Mass in general relativity

Mass not generally defined in general relativity due to the lack of conservation of energy
Mass classically :

M =

∫
D

ρ(x)d3x = − 1

4πG

∫
D

∆φd3x (33.1)

If we try to apply it directly, most general case for some spacelike hypersurface Σ and
two timelike vector fields ξ, χ :

M =

∫
Σ

T (ξ, χ)dµ[(3)g] (33.2)

If we assume a foliation by spacelike hypersurfaces :

M(t) =

∫
Σt

T (ξ, χ)dµ[(3)g] (33.3)

Conservation of mass :

∂tM(t) = (33.4)

This is due to the general invalidity of Noether’s theorem, as metrics will not generally
be time-invariant.

33.1 Bondi mass

33.2 Komar mass

For a stationary asymptotically flat spacetime, with Killing vector ξ, the Komar mass is

M =

∫
D

(2T (u, ξ)− Tg(u, ξ))dµ[g] (33.5)

As a surface integral

M = − 1

8πG

∫
S

εµνρσ∇ρξσ (33.6)

33.3 ADM mass

33.4 Positive mass theorem

Theorem 33.1. If the dominant energy condition holds, the total ADM mass of an
asymptotically flat spacetime is non-negative. If its mass is zero, it can only be Minkowski
space.

Paper on why a spacetime with the Casimir effect still has positive mass.
”Bondi mass cannot become negative in higher dimension”
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34 Causality, topology and general relativity

As the matter content will define the metric on the manifold for general relativity and
related theories, this means that the behaviour of matter will affect the causal structure
and possibly the topology itself.

34.1 Chronology and the energy conditions

Violation of the chronology condition is generally considered to be unphysical. Because
of this, many theorems were developped to study under which physical conditions we can
be sure that it is preserved.
One of the first such theorem was Tipler’s theorem, trying to show that for a physically
reasonable matter content, the resulting spacetime was not

Theorem 34.1. An asymptotically flat spacetime cannot be null geodesically complete
if

1. Rabk
akb ≥ 0 for all null vectors k

2. The generic condition is satisfied

3. It possesses a partial Cauchy surface S

4. The chronology condition is violated on J+(S) ∩ J−(g+)

Proof.

Hawking’s theorem :

Theorem 34.2. A spacetime with a compactly generated Cauchy horizon will violate
the weak energy condition if the partial Cauchy surface is non-compact. If it is compact,
then at best Rabl

alb = 0.

Theorems on CTCs : Hawking on compactly generated CTCs, that one about compact
Cauchy horizons (rigidity theorem)
”At first blush the suggested approach to identifying the operation of a time machine by
means of the Potency Condition is threatened by a result of Krasnikov (2002) showing
that every time oriented spacetimeM, gab without CTCs has as an extension a maximal
time oriented spacetime such that any CTC in the extension lies to the chronological past
of the image of M in the extension.”

34.2 Singularities and general relativity

Singularity theorems

Theorem 34.3. Spacetime that satisfies chronology, convergence condition (Rµνξ
µξν >

0), the generic condition and there exists a compact slice are timelike or null geodesically
incomplete.

Theorem 34.4. Spacetime that satisfies chronology, convergence condition (Rµνξ
µξν >

0), the generic condition and there exists a trapped surface are timelike or null geodesically
incomplete.
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Theorem 34.5. Spacetime that satisfies chronology, convergence condition (Rµνξ
µξν >

0), the generic condition and there exists a contracting region (cf Ellis 2007) are timelike
or null geodesically incomplete.

Theorem 34.6. Spacetime that satisfies chronology, convergence condition (Rµνξ
µξν >

0), the generic condition and stable causality is not satisfied are timelike or null geodesi-
cally incomplete.

Cosmic censorship hypothesis

34.3 Topological restrictions

Energy conditions and topology change

34.3.1 Topological censorship

While not directly related to the restriction of topology, the topological censorship theo-
rem gives some constraints on whether or not some topological features are measurable.

Theorem 34.7. Every causal curve extending from past null infinity to future null in-
finity can be continuously deformed to a curve near infinity.
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35 General relativity in n dimensions

Despite the similar equations, the number of spacelike dimensions has rather drastic
effects on how general relativity behaves.
The number of dimension is noted as (p + q) dimensions for a spacetime with signature
(p, q).

35.1 (1 + 1) dimensions

1 + 1 dimensional spacetimes, also called Lorentz surfaces, possess a great number of
attractive features for analysis. Their topologies can be exactly classified, many solutions
of PDEs are known exactly in two dimensions.
But as we will see later on, it suffers from its simplicity by missing on most of the
properties of four dimensional spacetimes, making them of limited use.

35.1.1 Lorentzian geometry in (1 + 1) dimensions

In two dimensions, the Riemann tensor has 22(22 − 1)/12 = 1 independent component,
meaning that with its symmetries, it can be expressed as

Rµνρσ = Cεµνερσ (35.1)

for some component C, which can be expressed as

Rµνρσ = C(gµσgνρ − gµρgνσ) (35.2)

Rνσ = Rµνρσg
µρ = −Cgνσ (35.3)

By contraction, it’s easy to see that C = −R/2, meaning that the Ricci tensor can be
expressed as

Rµν =
R

2
gµν (35.4)

This means that the Einstein tensor G is identically 0 for all metrics, making the field
equations

Λgµν = Tµν (35.5)

35.1.2 Angles in the Lorentz plane

We will need to define the notion of angles on Lorentz surfaces. There are several possible
definitions for angles, we will be using the one of Birman and Nomizu.
For an oriented, time oriented 2 dimensional Lorentzian manifold, existence of a global
unit timelike vector field τ
In the tangent plane we define the frame defined by the basis vectors τ and τ⊥, the unique
unit spacelike vector such that g(τ, τ⊥)
Allowable coordinate chart if (1, 0) is τ and (0, 1) τ⊥

For X, Y two timelike vectors with the same orientation, the angle u is defined by
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1

g(X, Y )

(
cosh(u) sinh(u)
sinh(u) cosh(u)

)(
Xt

Xx

)
=

(
Yt
Yx

)
(35.6)

u is independant of the allowable coordinate system. Angle between X and Y : (X, Y )
If X and Y with different time orientations : X and −Y have the same time orientation
: (X,−Y ) = u so we define (X, Y ) = −u
Properties :

1. (X, Y ) = −(Y,X)

2. (X,X) = 0

3. (X,−X) = 0

4. (X, Y ) + (Y, Z) = (X,Z)

5. (−X, Y ) = (X, Y )

6. (X,−Y ) = (X, Y )

For a normalized smooth timelike curve γ, take the unit tangent vector T and unit
normal vector T⊥. Geodesic curvature kg is kg = g(∇TT, T

⊥). Then ∇TT = kgT
⊥, and

∇TT
⊥ = kgT , and kg = −g(∇TT

⊥, T )
Z a unit timelike vector field parallely transported by γ, since the manifold is time
orientable, Z preserves orientation. Z⊥ is also parallely transported. Consider the angle
α(λ) = (T, Z)

Theorem 35.1.
dα

dλ
= −kg (35.7)

Proof. If T is future pointing,

T = cosh(α)Z − sinh(α)Z⊥

T⊥ = − sinh(α)Z + cosh(α)Z⊥

if past-pointing

T = − cosh(α)Z + sinh(α)Z⊥

T⊥ = sinh(α)Z − cosh(α)Z⊥

For a region D bounded by Γ, a Lorentz polygon made of timelike curves
Γi, with

Theorem 35.2. A timelike Lorentz polygon in the Lorentz plane with tangent vectors
Xi for the sides Γi obeys∑

i

θi = (X1, X2) + (X2, X3) + ...+ (Xk−1, Xk) + (Xk, X1) = 0 (35.8)

Gauss-Bonnet theorem :
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Theorem 35.3. In a 1+1 dimensional Lorentzian manifold, for a domainD with compact
closure with a boundary Γ that is a piecewise smooth timelike curve, then the following
equality holds ∫

Γ

kgds+
∑
i

θi −
∫
D

RdA = 0 (35.9)

with θi the exterior angles formed by the boundary.

Proof.

35.1.3 Triviality of the Einstein field equations

The Lorentzian Gauss-Bonnet theorem has rather important consequences for general
relativity in 1 + 1 dimensions, as we can guess from the appearance of the Einstein-
Hilbert action in it.

Theorem 35.4. The gravitational action in (1 + 1) dimension is constant with respect
to the metric, up to a volume term.

Proof. If we consider a spacetime orientable subset of the Lorentz surface, and then
consider the closed domain defined by timelike curves (the existence of such a domain is
guaranteed by looking at the image of a diamond via the exponential map, for instance).
We can now define the gravitational action inside this domain

1

2κ

∫
D

RdA+
1

κ

∫
Γ

K
1
2 (±h)dl = 0 (35.10)

Theorem 35.5. The stress-energy tensor is directly proportional to the cosmological
constant.

Proof. Since the gravitational action reduces to Λg,

(

∫
D

(Λ + LM)dµ[g])+ (35.11)

35.1.4 Classification of (1 + 1) Lorentz manifolds

For the study of spacetimes in (1 + 1) dimensions, we have the benefit of every manifold
being classifiable in 2 dimensions.
For compact manifolds :

Theorem 35.6. Every compact 2-manifold is homeomorphic to either the sphere, a
connected sum of toruses, or a connected sum of real projective planes.

Proof.

The sum of g toruses has Euler characteristic χ(M) = −2g, and the sum of 2 projective
planes has χ(M) = 0 (this is the Klein bottle K). The connected sum of K and P will
always be χ(M) < 0
There are only two compact spacetimes : the torus and the Klein bottle.
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Theorem 35.7. Every 2-manifold is homeomorphic to the sphere S2 from which we
remove a closed totally disconnected set X, before removing an infinite sequence of non-
overlapping disks {Di} before identifying the boundaries of those disks in pairs (possibly
with themselves).

For non-compact manifolds, this will correspond roughly to the plane with some identifi-
cations along boundaries, with the addition of (possibly non-orientable) handles and the
removal of closed sets.

Definition 35.8. A Lorentz surface is a equivalence class of (1 + 1) dimensional Lorentz
(M, [g]) such that two Lorentz manifolds (M1, g1) and (M2, g2) describe the same Lorentz
surface if M1 ≈M2 and (under some diffeomorphism) g1 = Ωg2

For Riemannian two dimensional manifolds, there exists a theorem relating conformally
equivalent metrics, the uniformization theorem

Theorem 35.9. Every Riemann surface is the quotient of a manifold that is diffeomor-
phic and conformally equivalent to either the sphere, plane or hyperbolic disk.

In particular, compact manifolds are of positive curvature for g = 0, zero for g = 1, and
negative for g > 1.

For Lorentzian manifolds, the situation is more complex, as the metric can be constructed
from both a Riemannian metric and a non-vanishing vector field.

35.2 (1 + 2) dimensions

The Riemann tensor is a function of the Ricci tensor

Rµνρσ = gµρRνσ + gνσRµρ − gνρRµσ − gµσRνρ −
1

2
(gµρgνσ − gνρgµσ)R

Hence the curvature depends directly on the matter content, no propagation of gravity

Weyl tensor is identically zero

Classification of globally hyperbolic (1 + 2) spacetimes : σ is gonna be one of the 2D
Riemannian manifolds

Every Riemannian manifold will be g = Ωf ∗ḡ, f ∈ Diff(Σ), ḡ is the metric of the plane,
sphere or hyperbolic plane.

35.3 (1 + 3) dimensions

General relativity in (1+3) dimensions is the most important case as it corresponds with
the apparent dimension of our own universe (this can be verified by such phenomenons
as the dropoff of solutions of the Laplace equation or the number of degrees of freedom
of monoatomic gases in statistical mechanics).

Unlike for the two previous cases, (1 + 3) dimensional spacetimes are the first example
where the Riemann tensor does not depend directly on the stress-energy tensor, allowing
for gravity to act at a distance.

Non-zero Weyl tensor generally
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35.4 Higher dimensions

Non-spherical horizons
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36 Conceptual notions

36.1 Diffeomorphism invariance

For a diffeomorphism f :M→M, there corresponds a metric g′ in the original coordi-
nates such that f∗g ≈ g′ pointwise

36.1.1 The hole argument

One of the important departure of general relativity compared to classical mechanics is
the abandonment of the notion of absolute space and time.
Consider a spacetime with for which we know the
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37 Linearized gravity

For a wide variety of reasons, it may be useful to decompose the metric into a fixed
background metric g0 and a deformation of that metric h.

gµν = g0
µν + hµν (37.1)

Decomposition of the inverse metric tensor :
The binomial inverse theorem :

(A + B)−1 = A−1 −A−1(I + BA−1)−1BA−1 (37.2)

gµν = (ηµν + g0
µν)
−1 = (g0)µν − (g0)µα[(δ + h(g0)−1)−1]βαhβγη

γν (37.3)

This gives us a recursive definition of the inverse metric.

gµν = ηµν − hαβηαµηβν +O(hµν) (37.4)

From now on we will write hµν to mean hαβη
αµηβν , and the raising and lowering of indexes

will be done with the Minkowski metric.

Γσµν = ((g0)ρσ − hρσ +O(h2
µν))[(g

0
µρ,ν + g0

νρ,µ − g0
µν,ρ) + (hµρ,ν + hνρ,µ − hµν,ρ)]

= (Γ0)σµν − h
ρσΓ0

ρµν + (g0)ρσ(hµρ,ν + hνρ,µ − hµν,ρ) +O(hµνhαβ,γ) +O(h2
µν)

Rµνσ
τ = ∂ν(Γ

0)τ µσ − ∂ν(h
ρτΓ0

ρµσ) + ∂ν((g
0)ρτ (hµρ,σ + hσρ,µ − hµσ,ρ))

− ∂µ(Γ0)τ νσ + ∂µ(hρτΓ0
ρνσ)− ∂µ((g0)ρτ (hνρ,σ + hσρ,ν − hνσ,ρ))

+ [(Γ0)αµσ − h
ραΓ0

ρµσ + (g0)ρα(hµρ,σ + hσρ,µ − hµσ,ρ)]
[(Γ0)τ αν − h

ρτΓ0
ραν + (g0)ρτ (hαρ,ν + hνρ,α − hαν,ρ)]

− [(Γ0)ανσ − h
ραΓ0

ρνσ + (g0)ρα(hνρ,σ + hσρ,ν − hνσ,ρ)]
[(Γ0)τ αµ − h

ρτΓ0
ραµ + (g0)ρτ (hαρ,µ + hµρ,α − hαµ,ρ)]

+ O(hµνhαβ,γ) +O(h2
µν)

Rµνσ
τ = R0

µνσ
τ

+ ∂µ(hρτΓ0
ρνσ)− ∂ν(hρτΓ0

ρµσ) + (Γ0)ανσh
ρτΓ0

ραµ − (Γ0)αµσh
ρτΓ0

ραν

− hραΓ0
ρµσ(Γ0)τ αν + hραΓ0

ρνσ(Γ0)τ αµ

+ (∂ν(g
0)ρτ )(hµρ,σ + hσρ,µ − hµσ,ρ)

− (∂µ(g0)ρτ )(hνρ,σ + hσρ,ν − hνσ,ρ)
+ (Γ0)αµσ(g0)ρτ (hαρ,ν + hνρ,α − hαν,ρ)
+ (g0)ρα(hµρ,σ + hσρ,µ − hµσ,ρ)(Γ0)τ αν
− (Γ0)ανσ(g0)ρτ (hαρ,µ + hµρ,α − hαµ,ρ)
− (g0)ρα(hνρ,σ + hσρ,ν − hνσ,ρ)(Γ0)τ αµ

+ (g0)ρτ∂ν(hµρ,σ + hσρ,µ − hµσ,ρ)− (g0)ρτ∂µ(hνρ,σ + hσρ,ν − hνσ,ρ) (37.5)

+ O(hµν,σhαβ,γ) +O(hµνhαβ,γ) +O(hµνhαβ)
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If we take the case of Minkowski space as the background metric, then things simplify
immensely, with g0

µν = ηµν , g
0
µν,ρ = 0, (Γ0)ρµν = 0 and R0

µνσ
τ

= 0. If we choose to ignore
every products of components of the perturbation and its derivatives, we have

Rµνσ
τ = ηρτ [∂ν(hµρ,σ + hσρ,µ − hµσ,ρ)− ∂µ(hνρ,σ + hσρ,ν − hνσ,ρ)]

By contraction we obtain the Ricci tensor

Rµσ = λ[(hµ
ν
,νσ + hσ

ν
,µν −�hµσ)− (hν

ν
,µσ + hσ

ν
,µν − hνσ,µν)] (37.6)

By defining the trace of the field h = hµνη
µν , we can rewrite this in the simplified form

Rµσ = λ[hµ
ν
,νσ + hνσ,µ

ν −�hµσ − h,µσ] (37.7)

37.1 Coordinate gauge

Since the metric is fixed, we have to consider what happens in the case of a diffeomorphism
on the manifold, corresponding to a coordinate change

yµ = f(xµ) (37.8)

The metric itself transforms with the Jacobian Jµµ′

gµ′ν′ = Jµµ′J
ν
ν′gµν = Jµµ′J

ν
ν′(ηµν + hµν) (37.9)

Hilbert gauge :

De Donder gauge :

�h̄µν = κTµν (37.10)

37.2 Solution

Linearized gravity in the Hilbert gauge offers a fairly obvious comparison with electro-
magnetism, and we may then use similar methods to find its solutions if we choose to
consider the case where T does not depend on h.

Green function :

�xG(x, y) = δ(x− y) (37.11)

The Green function will be

h̄µν = κ(G ∗ Tµν) (37.12)
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37.3 Linearized gravitational waves

Even for vacuum solutions �h̄µν = 0, we still get wavelike solutions

h̄µν =

∫
dn−1pfµν(p)e

ixαpα (37.13)

fµν(p) : polarization of the wave of momentum p
We get Minkowski space for the choice fµν(p) = 0
Generation of gravitational waves by quadrupolar momentum
We will see fully non-linear gravitational waves later on.
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38 Distributional general relativity

Stress-energy tensors that generate tensors only defined in the sense of distributions.

38.1 Thin shell formalism

If we allow the metric to be C0, we can describe spacetimes (M, g) where there exists a
region D ⊂ M for which g|D = g+ and g|M\D = g−, with g+, g− arbitrary Lorentzian
metrics with the only condition that, on the boundary, the limit of both coincide.

g+(∂D) = g−(∂D) (38.1)

If we define a function η(x) such that η(∂D) = 0, then

g(x) = Θ(η(x))g+(x) + Θ(−η(x))g−(x) (38.2)

Normal vector to the shell : nµ = ∇±µ η, nµnµ = 1
Israel’s Junction condition
Consider a smooth hypersurface Σ dividing the spacetimeM in two partsM+ andM−,
such that ∂M+ = ∂M− = Σ. The function f : M → R defining Σ by f(Σ) = {0}
is defined to be positive for f(M+) and negative for f(M−). Then we can define the
characteristic functions

χ+ = χM+ = f ◦ θ
χ− = χM− = 1− χ+ (38.3)

Up to the values on Σ, any function h :M→ V which has at most simple discontinuities
in Σ can be written as

h = h+χ+ + h−χ− (38.4)

with h± = h on the restriction to M±. For a point p ∈ Σ and a sequence of points
qn ∈M+, rn ∈M−, we define

[h](p) = lim
q→p

h+ − lim
r→p

h−

h|(p) =
1

2
(lim
q→p

h+ + lim
r→p

h−) (38.5)

which correspond to the discontinuity jump and the averaged value at Σ.
From algebra distribution properties :

χ+ · χ+ = χ+

χ− · χ− = χ−

χ+ · χ− = 0

χ+ · δΣ =
1

2
δΣ

(38.6)
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[h1 + h2] = [h1 + h2] (38.7)

[h1h2] = h1|[h2] (if [h1] = 0) (38.8)

(h1 + h2)| = h1|+ h2| (38.9)

(h1h2) = h1|h2| (if [h1] = 0 or [h2] = 0) (38.10)
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Part III

Behaviour of matter on spacetime
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39 Classical mechanics

39.1 Point particles

Point particles are simply defined as curves in general relativity, with the class of curve
determining the sign of the particle’s mass, as the square of the mass is defined as being
of the opposite sign of the norm of tangent vector.

sgn(uµuµ) = sgn(−m2) (39.1)

which means that timelike curves correspond to particles with m2 > 0 (also called
tardyons), null curves tom2 = 0 (or luxons), and spacelike curves tom2 < 0 (or tachyons).
This is based on the signature of the metric (−,+,+,+), though it is also common to
see (+,−,−,−), in which case the sign will be flipped.

39.1.1 The Nambu-Goto action

The basic action for positive mass particles is proportional to the proper time of the curve

S = −m
∫ λ2

λ1

(g(u(λ), u(λ))
1
2dλ (39.2)

This definition isn’t suitable for the action as a functional on D(M), so we will redefine
it, with some abuse of notation, as

S = −m
∫ λ2

λ1

∫
Σ

√
g(ẋ, ẋ)δn(x− x(λ))dnxdλ (39.3)

The action is a distribution that will map test functions to

S[φ] = −m
∫ λ2

λ1

√
g(ẋ, ẋ)φ(x(λ))dλ (39.4)

Hence we cannot use directly the Euler-Lagrange equation, as our action is not directly
an integral, and we will have to use the Gâteaux derivative

δS[gµν ]

δgµν
[f ] = lim

ε→0

S[gµν + εf ]− S[gµν ]

ε
(39.5)

The difference between those two distributions is the distribution

δS[φ] = −m
∫ λ2

λ1

∑
µ,ν

[((gµν + εf)uµuν)
1
2φ(x(λ))− (gµνu

µuν)
1
2φ(x(λ))]dλ (39.6)

This definition of the action
[...]

T µν = muµuνδ(~x− ~x(λ)) (39.7)

Total energy :

E =

∫
Σ

Tµνξ
µξν = mg(u, ξ)2δ(x− x(λ)) (39.8)
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In Minkowski space : E = γm

If we pick the Fermi coordinates for the curves,

Rµν −
1

2
Rgµν = mξµξνδ(~x) (39.9)

Show that it is spherically symmetric and static

The stress-energy tensor of a point particle is a source for a Schwarzschild black hole in
the distributional sense.

39.1.2 General Lagrangian for point particles

This action has the drawback of only being defined for timelike curves. For a more general
action that will accept particles of more general trajectories, we switch to the Polyakov
action, where

S =

∫
(39.10)

39.1.3 The Hamiltonian formalism for point particles

While the bundle explanation of the Hamiltonian formalism was skipped for the general
case, it becomes fairly simple in the case of the point particle. While the Lagrangian is a
function on the tangent bundle (xµ, vµ) ∈ TM, the Hamiltonian becomes a function on
the cotangent bundle (xµ, pµ).

X0 = vµ(xµ, pµ)∂µ + fµ(xµ, pµ) (39.11)

θ0 = pµdx
µ (39.12)

One-particle phase space : cotangent bundle T ∗M, symplectic 2-form

ω = dxµ ∧ dpµ (39.13)

Metric defines a solder form between the symplectic manifold and the tangent bundle

(xµ, pα) 7→ (xµ, gαβp
α) (39.14)

Symplectic form :

ωg = dxµ ∧ d(gµνp
ν) (39.15)

Hamiltonian vector field :

iXgωg = dL (39.16)

Xg = pµ∂µ − Γµρσp
ρpσ∂µ (39.17)
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39.2 Extended objects

39.2.1 The Polyakov action

Much like how we used the Polyakov action to represent point particles as an embedding
of a 1-submanifold, we can generalize it as the embedding of a k-submanifold.
Consider the embedding X : S →M, the polyakov action for this is

S[X, γ] =

∫
dµ[γ] det(X∗g) (39.18)

(X∗(g))(u, v) = g(dX(u), dX(v))
In a coordinate system on M : φµ ◦X(σ) = Xµ(σ)
Coordinates on the tangent bundle :

dXp(∂a|p) = ∂aX
µ (39.19)

Pullback metric : Gab = ∂aX
µ∂bX

νgµν
[CHECK IT]

S[X, γ] = −M
∫
dµ[γ]γabgµν∂aX

µ∂bX
ν (39.20)

This is the general Polyakov action for extended objects, which can be used to approxi-
mate such things as topological defects in field theories or strings in string theory. The
associated equation of motion is then

δS

δγab
= (39.21)

δS

δXµ
= (39.22)

In Minkowski space :

T ab = − 1

α′
(Gab −

1

2
habh

cdGcd) (39.23)

EoM : Tab = 0

39.2.1.1 Strings

The simplest Polyakov action for a dimension > 1 is the relativistic string, modelled by
a 1 + 1-dimensional submanifold.. It can be used to approximate the action of a cosmic
string, as well as being the basis for string theory.
2 possible timelike submanifolds : sheet R× I and tube R× S
Boundary conditions to get rid of the boundary terms :
Periodic boundary condition : Xµ(τ, σ + π) = Xµ(τ, σ) Neumann boundary condition
: ∂σX

µ(τ, 0) = ∂σX
µ(τ, π) = 0 Dirichlet boundary conditions : Xµ(τ, 0) = Xµ(τ, π),

∂ρXµ(τ, 0) = ∂ρXµ(τ, π), γ(τ, 0) = τ(τ, π)

39.2.1.2 Surfaces

The next model of higher dimensionality is surfaces, a 2 + 1-dimensional submanifold. It
can be used to approximate the action of domain walls.
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40 Thermodynamics

40.1 The n-body problem

For a system of n point particles on a spacetime with coordinates xµi for the i-th particle,
system is

uµi∇µu
ν
i = m−1F ν

i (xj) (40.1)

F : interactions between the point particles
Liouville equation

40.2 Vlasov matter

While point particles furnish a possible model for this, we want to keep it as general as
possible. To allow this, we will instead consider particles as distributions
Number of particles :

ρ(p) =

∫
PpM

fωp (40.2)

N =

∫
Σ

fiXθ (40.3)

Equation of N free particles : Lioville-Vlasov equations

pµ =
dxµ

dλ
,
dpµ

dλ
= −Γµρσp

ρpσ (40.4)

T µν(x) =

∫
PpM

f(x, p)pµpνdµp (40.5)

40.3 Boltzmann distribution in curved spacetime

40.4 Entropy

Tipler and Boltzmann recurrence time
Poincaré theorem :

Theorem 40.1. For any second-countable, Hausdorff measure space (X,Σ, µ) with a
one-parameter map Tt that preserves the measure on X, then for A ∈ Σ with µ(A) > 0,
the set of points for there exists no t ∈ R such that Tt(x) is not in an arbitrarily small
neighbourhood of x has measure 0.

Proof. Consider a basis of open sets {Un}n∈N for X. For every n ∈ N, we define

U ′n = {x ∈ Un, ∀n ≥ 1, fn(x) /∈ Un} (40.6)
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41 Classical field theory

41.1 Scalar field

Section of the real or complex line bundle, transforms under the (0, 0) representation of
the Lorentz group

Real :

L =
1

2
g(∇ϕ,∇ϕ)−m2ϕ2 − ξRφ− V (φ) (41.1)

Complex :

L =
1

2
g(∇ϕ, (∇ϕ)∗)−m2|ϕ|2 − ξR|φ| − V (|φ|) (41.2)

In coordinates :

L =
1

2
gµν∂µϕ(x)∂νϕ(x)−m2ϕ2(x)− ξR(x)φ(x)− V (φ(x)) (41.3)

Klein-Gordon equation

(�+m2)ϕ+ ξR + V (φ) = 0 (41.4)

Canonical momentum for a :

π =
∂L

∂φ̇
= ξµ∂µφ (41.5)

Hamiltonian density :

H = (41.6)

Important class of potentials :

V (φ) = 0 : free field V (φ) = gφ3 : cubic interaction V (φ) = gφ4 : quartic interaction
V (φ) = g sin(φ) : Sine-Gordon

41.2 Spinor fields

Section of the associated bundle to the Clifford bundle

Representations : (1
2
, 0), (0, 1

2
), (1

2
, 0)⊕ (0, 1

2
)

(ea
µγaDµ +m)ψ + V (ψ) = 0 (41.7)

Potentials :

V (ψ) = 0 : Free field V (ψ) = (ψ̄ψ)2 : 4-point interaction V (ψ) = (the axial current one)

Majorana equation
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41.3 Electromagnetic fields

Connection on the U(1) principal bundle
Curvature F = dA

Fµν = ∇µAν −∇νAµ (41.8)

L =
1

4µ0

Tr(F ∧ F ∗) =
1

4µ0

FµνF
µν (41.9)

Maxwell equation :

∇µF
µν = jν (41.10)

∇µ(∇µAν −∇νAµ) = jν (41.11)

�Aν −∇µ∇νAµ = jν (41.12)

Gauge invariance : invariant under the action of U(1) on the connection
For the Lorentz gauge :

∇µA
µ = 0 (41.13)

�Aν + [∇ν ,∇µ]Aµ −∇ν∇µA
µ = jν (41.14)

�Aν −Rν
ρA

ρ = jν (41.15)

Dual electromagnetic tensor

41.3.1 The Einstein-Maxwell equations

Combining the Einstein field equations and the Maxwell equations gives us a set of partial
differential equations called the Einstein-Maxwell equations, which describe spacetimes
with sourceless electromagnetic fields, also called electrovacuum spacetimes. The equa-
tions are then of course

Rµν −
1

2
Rgµν = κ(FµσFνρg

ρσ − 1

4
gµνFσρF

σρ) (41.16)

∇µF
µν = 0, ∇[µFµν] = 0 (41.17)

Properties
Rainich conditions :

T µµ = (FµσF
µσ − n

4
FσρF

σρ) (41.18)

For n = 4, T = 0, implying R = 0
Penrose-Newman
Kaluza-Klein
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41.4 Yang-Mills fields

Connection on the principal bundle SU(N) (or U(1) for N = 1).
We will only consider here N > 1 since the case of U(1) was already done in the previous
section.
Generators of SU(N) : N − 1 dimensions so N − 1 generators Ta of the algebra su(N) of
traceless hermitian complex N ×N matrices

{Ta, Tb} =
1

N
δabIn +

N2−1∑
c=1

dabcTc (41.19)

[Ta, Tb] = i

N2−1∑
c=1

fabcTc (41.20)

content... (41.21)
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Part IV

The Cauchy problem
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42 Classical fields and particles

42.1 The Cauchy problem of classical fields and

particles on a globally hyperbolic spacetime

Evolution of a set of fields (sections of vector bundles) with values known in a subset of
spacetime to the entirity of spacetime, for a fixed spacetime (M, g)
Initial conditions on hypersurface S : (φi|S,∇φi|S)
Second order linear PDEs :

Aµν
∂2u(t, xi)

∂xµ∂xν
+Bµ

∂u(t, xi)

∂xµ
+ C(t, xi)u(t, xi) = D(t, xi) (42.1)

If derivatives commute : Aµν is symmetric

Theorem 42.1. The second order terms can be rewritten as Aµuµµ with an appropriate
change of coordinates.

Canonical form :

Aµuµµ +Bµuµ + Cu = D (42.2)

Quasilinear hyperbolic equations

Definition 42.2. A PDE is said to be :

• elliptic if all the eigenvalues of Aµν are positive or all are negative

• hyperbolic if none are zero and one has the opposite sign of the (n− 1) others

• parabolic if one is zero and all others are of the same sign

• Ultrahyperbolic if none are zero and the same number are positive and negative.

In the canonical form :
Elliptic :

n∑
i=1

uii (42.3)

Hyperbolic :

−utt +
n∑
i=2

uii (42.4)

Parabolic :

n∑
i=2

uii (42.5)

Ultra hyperbolic :
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n/2∑
i=1

uii −
n∑

i=n/2+1

(42.6)

Constraint equations

42.1.1 Point particles

Cauchy problem for causal point particles → uniqueness of solutions for causal curves
Solution is unique for globally hyperbolic spacetimes
Show tachyons don’t have a well defined Cauchy problem in general

42.1.2 Classical fields

That paper Valter Moretti linked on the wave equation in GR

42.2 The Cauchy problem of classical fields and

particles on non-globally hyperbolic spacetime

Definition 42.3. An open set U ⊂ M is causally regular if for every ϕ ∈ C(U) that
satisfies �ϕ = 0, there is a function ϕ′ ∈ C(M) that satisfies �ϕ and ϕ′|U = ϕ

Definition of Yurtsever :

Definition 42.4. An open set U is causally regular if its closure Ū contains an open
neighbourhood U ′ such that for every (n/2− 1)-form ω ∈ Γ(Λn/2−1U ′) satisfying �ω on
U , there exists a smooth form ω′ on M such that ω′|U = ω and �ω′ = 0.

With this definition, M itself is obviously causally regular.
Causally regular : a local solution can be extended to a global solution

Definition 42.5. A point p ∈M is causally regular if every neighbourhood U such that
p ∈ U contains a causally regular neighbourhood.

(Uniqueness of solution?)
(Does it apply for fields that are hyperbolic but not free scalars)

Definition 42.6. A spacetime is causally benign if for every open set U , there is an open
set U ′ ⊂ U which is causally regular.
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43 The Cauchy problem in general relativity

In a manner similar to the Cauchy problem for fields, the Cauchy problem for spacetime
itself will involve a set of initial data for the spacetime to evolve.

Definition 43.1. A set of initial data for a spacetime is a triplet (Σ, ḡ, K) such that Σ is
a hypersurface of codimension 1, ḡ is a Riemannian metric and K is a rank (0, 2) tensor
on Σ.

From given initial data find a solution (ideally unique) for future times.

Definition 43.2. A development of a set of initial data is a triplet (M, g, σ) where
(M, g) is a Lorentz manifold and σ is a diffeomorphism σ : Σ→M

In other words, we have an initial spacelike hypersurface (which we can consider as some
spacelike neighbourhood at a given time), with the values of the metric and its derivatives
on it.

43.1 The Cauchy problem for globally hyperbolic

vacuum solutions

Uniqueness of equations : Gµν + Λgµν = 0 + some gauge condition

Splitting via ADM formalism

43.2 The Cauchy problem for globally hyperbolic

solutions with matter fields

cf Hawking

43.3 The Cauchy problem for non-globally

hyperbolic solutions

Once we drop the requirement of global hyperbolicity, the situation becomes much more
complicated, as can be seen simply by considering the examples of taking Minkowski
space (Rn, η) and Minkowki space minus the point {(t, ~x)|t > 0, ~x = 0}. Not only is the
development of some surfae at t = 0 non-unique (in fact, without any further conditions,
there are infinitely many developments), but we are not even required to have the same
topology of the spacelike hypersurface.

Non-unique development from topology (cf Krasnikov)

43.3.1 Cauchy problem and singularities

Boundary conditions on singularities

Example : Kerr extremal black hole
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43.3.2 Cauchy problem and closed causal curves

Krasnikov on the non-uniqueness of development for non-causal spacetimes
Non-unique matter evolution
Benign closed timelike curves
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Part V

Alternative theories of relativity
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44 Theories of more general connections

If we drop the constraints on the Koszul connection of the frame bundle, we will get a
theory with an independent metric and connection term. It is described by the Palatini
action that we saw earlier.

S[e, ω] =
1

2κ

∫
εabcd(e

a
µ ∧ ebν ∧Rbc − 1

12
Λ) (44.1)

Or just by using the Einstein-Hilbert action with independent terms

S[g],Γ] =
1

2κ

∫
dµ[g](gµνRµν(Γ) + Λ) (44.2)

δS

δe
= (44.3)

δS

δω
= (44.4)

Gµν = κT µν = (44.5)

3 parameters : curvature C, torsion T, non-metricity N
Metric-affine gravity CTN Weitzenböck gravity (teleparallel gravity) T Einstein Cartan
CT General relativity C

44.1 Metric-affine gravity

Curvature, torsion, non-metricity
Source of torsion and non-metricity : hypermomentum, defined by

δSM
δω

(44.6)

44.2 Einstein-Cartan-Sciama-Kibble theory

The Einstein-Cartan-Sciama-Kibble theory (or Einstein-Cartan theory) is the case of a
theory with a connection that displays both curvature and torsion, but is still metric.

x (44.7)

Source of torsion : the spin density tensor, mostly sourced by fermion fields

44.3 Teleparallel gravity

No curvature, only torsion
Same results as Einstein general relativity
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45 Scalar and vector theories

The first theories attempted for relativistic theories of gravity were generally scalar the-
ories.

45.1 Einstein-Nordstrøm theory

�φ = −4πGT (45.1)

L =
1

8π
ηµν∂µφ∂νφ− ρφ (45.2)

Equivalent to gµν = φ2ηµν , or eaµ = φδaµ, with curvature

R = −6�φ
φ3

(45.3)

R = 24πT (45.4)

45.2 Einstein’s scalar theory

T µνg =
1

4πG
[∂µφ∂νφ− 1

2
ηµν∂ρφ∂

ρ] (45.5)

T µνm = ρφuµuν (45.6)
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46 f (R) gravity

L =
1

2κ
f(R) (46.1)

∂f(R)

∂R
Rµν −

1

2
f(R)gµν + [gµν�−∇µ∇ν ]

∂f(R)

∂R
= κTµν (46.2)
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47 Brans-Dicke gravity

S =

∫
dµ[g]

1

16π
(φR− ω∇µφ∇µφ

φ
+ LM) (47.1)

�φ =
8π

3 + 2ω
T (47.2)

Gµν =
8π

φ
Tµν +

ω

φ2
(∂µφ∂νφ−

1

2
gµν∂ρφ∂

ρφ) +
1

φ
(∇µ∇νφ− gµν�φ)
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48 Pauli-Fierz gravity

General relativity needs not necessarily be described by a theory of dynamic geometry
for spacetime. If the problem is considered from the point of view of a field theory, then
by its basic properties, we obtain a field theory that is massless (due to its r−2 decay),
of integer spin (due to [static???]), of even spin (due to being universally attractive) and
that cannot be of spin 0, since such a theory does not predict the observed deflection of
light. As spins superior to 2 tend to have pathological properties, let’s consider the theory
of spin 2 (it is possible also to have a theory of spin 2 and 0 which will be equivalent to
a Brans-Dicke type theory).
The free theory of spin 2 is uniquely determined by a symmetric tensor field hµν with
Lagrangian

L = −1

4
hµν,σh

µν,σ +
1

2
hµν,σhσν,µ +

1

4
(∂σh)(∂σh)− 1

2
(∂σh)(∂νh

νσ) (48.1)

with h = hµνη
µν

This is the same form as the linearized gravity that we have seen earlier for a flat back-
ground metric. And indeed, we will see that in its final form, the Pauli-Fierz theory is
the equivalent of the substitution gµν = ηµν + hµν .
Issues with coupling : for

L = LPF +
1

2
∂µφ∂

µφ (48.2)

Equation of motion : �h̄µν = 0, �φ = 0
Noether current
Decomposition of the determinant :

det(g) = exp(Tr(ln(g))) (48.3)

√
det(g) = exp(

1

2
Tr(ln(η + h))) (48.4)

While it should be classically equivalent to general relativity, it will later on be useful for
the quantization of gravity.
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49 Massive gravity

Pauli Fierz with a mass term
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50 Kaluza-Klein

The Kaluza-Klein theory was one of the first attempt at a unification of general relativity
with other forces.
Manifold of n+ 1 dimensions. For n = 4 :

gµ̂ν̂ =

(
gµν gµ5

g5ν g55

)
(50.1)

Topology : M̂ =M× S, the 5th dimension is compactified, characteristic dimension of
S is very small

Bµ =
gµ5

g55

Φ = g55

gµ̂ν̂ =

(
gµν + ΦBµBν ΦBµ

ΦBν Φ

)
(50.2)
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51 Supergravity

Extension of symmetry groups from the Poincaré group to symmetries between different
reps.

51.1 Grassmann algebras

51.2 Supermanifolds

Supermanifolds are defined in the same manner as manifolds, but the space is no longer
locally diffeomorphic to Euclidian space, but to the product Rn

c × Rm
a , of the usual n-

dimensional Euclidian space and anticommuting numbers.
The definitions will be somewhat similar to those of a manifold, with a few nuances.

Definition 51.1. A supermanifold of dimension (n,m) is a topological space M with a
complete atlas (Uα, φα) of maps

φα : Uα → Rn
c × Rm

a (51.1)

Canonical isomorphism between the tangent bundles of Lorentz spin manifolds and su-
permanifolds

Theorem 51.2. For a spin manifold (M1, g) with a spinor bundle πS : S →M1 and a
supermanifold (M2, g), for every p ∈M1, there is a canonical isomorphism of Z2-graded
vector spaces

ι : TpM1 + S∗p → TpM2 (51.2)

Proof. cf Killing spinors are Killing vector fields in Riemannian Supergeometry

Supersymmetric groups : Graded Z2 Lie algebra : Lie superalgebra
Supersymmetric Poincaré algebra : additional generators that transform as undotted
spinors QI

A or dotted Q̄I
Ȧ

[Pµ, Q
I
A] = [Pµ, Q̄

I
Ȧ

] = 0

[Mµν , Q
I
A] = i(σµν)A

BQI
B

[Mµν , Q̄
IȦ]] = i(σ̄µν)

Ȧ
ḂQ

IḂ

{QI
A, Q̄

J
Ḃ
} = 2σµ

AḂ
Pµδ

IJ

{QI
A, Q

J
B} = εABZ

IJ

{Q̄I
Ȧ
, Q̄J

Ḃ
} = εȦḂZ

IJ

(51.3)

Superspace : space with coordinates (xµ, θA), with fermionic θ
Supermanifold :
{θ, θ} = θ2 = 0

SEH =
1

2κ

∫
dµ[e]Rab

µν(ω)(e−1)µa(e−1)νb (51.4)
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SEH =
1

2κ

∫
dnxεabcdε

µνρσRcd
ρσ(ω)eaµe

b
ν (51.5)

SEH =
1

2κ

∫
dnxεabcde

a ∧ eb ∧Rcd(ω) (51.6)

Rarita-Schwinger field :

SRS = − i
2

∫
dnxεµνρσψ̄µγ5γνDρψσ (51.7)

N = 1 supergravity :
multiplet {eaµ, ψaµ}

233



52 Regge calculus

52.1 Simplicial manifolds

Define spacetime as a graph of spacetime points linked together by edges, metric is defined
by the length of the edges or their angles
Definition : The lattice definition of a spacetime is a graph (vi, ei) with spacetime points
for vertices and the edges defining the distances between two points. To every edge
between points vi and vj is associated a real number which is the length between the two
points.
It is a simplicial complex.
Curvature on the hinges : in an n-dimensional spacetime, the lattice is made of n-
simplices, with the curvature concentrated on subsimplices of dimension n−2, aka hinges.
Deficit angle : for a point vi, consider the angle made by every simplicial n-polytope
around vi. The deficit angle

S =
1

2κ

∫
Rdµ[g]→ SR =

∑
i

|σi|εi (52.1)

52.2 In two dimensions

SR =
∑
i

liεi (52.2)
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53 Theories of different signatures

While many theories of a spacetime with a non-Lorentzian metric are not physically
relevant, they can be interesting to study.

53.1 Signature conventions

One important issue regarding the signature of spacetime is that there are two signature
with apparent similarity, the Lorentzian signature −+ ++ and its inverse +−−−.

53.2 Riemannian spacetime

As all Hausdorff, paracompact manifolds admit a Riemannian metric
The most important difference of a Riemannian spacetime is that the lack of a timelike
dimension means that there are no classification of vectors or curves. Hence we cannot
pick a particular class of curves as observers.
If we just pick any curve as possible observers, then every observer carries its own time
with him. If we have a set of curves with roughly the same tangent, we can define some
sort of common time orientation for those observers. This idea was explored by Greg
Egan.
Riemannian manifold is a metric space.

53.2.1 Riemanninan black hole

ds2 = (1 +
2M

r
)dt2 + (1 +

2M

r
)−1dr2 + r2dΩ2 (53.1)

Distance function :

d(0, r) =
√

2(r + 2M)− 2M arcsinh(
√
r/2M) (53.2)

Surface at r : 4πr2, d(0, r) < r, because negative curvature

53.3 Ultrahyperbolic spacetime

For a spacetime of dimension n > 2, it is possible to have a signature where the number of
positive and negative eigenvalues are both superior to 1. Such a spacetime, of signature
(p, q), p, q > 1, are called ultrahyperbolic spacetimes, so called because the wave equation
on such a spacetime is an ultrahyperbolic PDE, that is∑

i,j

aij∂i∂jf +
∑
i

bi∂if + cf = d (53.3)

where aij itself has a signature (p, q).
Stability, Cauchy, etc

53.4 Degenerate signatures

(p, q, r), singular points
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53.5 Dynamic signature

signature f(x) + ++
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54 Misc. Theories

Some theories rely on the replacement of spacetime manifolds by more general structures
Manifolds with boundaries : charts are on φ : U → O ⊂ Hn, the half space
Conifolds

54.1 Hoyle’s theory of gravity

Hoyle’s theory of gravity was a modification of the Einstein field equations to allow a
(globally) stationary universe to still remain possible with cosmological observations. It
is obtained by the addition of a tensor field C called the creation field

Gµν + Cµν = κTµν (54.1)

The creation field is so called because in general, it will lead to a break of the local
conservation of energy, as can be easily seen from the Bianchi identity

∇µT
µν = ∇µC

µν (54.2)

The creation field is obtained by considering a timelike vector field ξ, in which case

Cµν = ∇νξν (54.3)

If ξµ = C(1, 0, 0, 0), Cµν = Γσµνξσ, which is symmetrical.
For the FRW spacetime :

Cij = −CRṘδij (54.4)

Field equations :

2RR̈ + Ṙ2 − CRṘ = 0

3Ṙ2 = κρR2 (54.5)

For R = 1 at t = 0,

R = et
Ct
3 (54.6)

Used to prevent the singularity in the FRW model
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Part VI

Quantum theory and general
relativity
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55 Quantum theory in general relativity

55.1 Quantum theories

For the most part, all quantum theories share the following axioms :

1. Physical states are represented by rays in a Hilbert space, that is, for ψ ∈ H \ {0},
a state is represented by ψ/‖ψ‖.

2. Observables are represented by self-adjoint operators on this Hilbert space.

3. For a system in a state ψ, an experiment to measure a quantity associated with
the observable Â, with eigenvectors {ψn} and eigenvalues An, the probability of
measuring that system in a state ψk (with Ak as a result of this measurement) is

P (X = Ak) = 〈ψ, ψk〉

55.2 Quantization

While we will want to define quantum theories independently of their classical coun-
terparts, it will be useful to generate some quantum theories from the current existing
theories we have as a starting point. This is done by a process called quantization.
There are several ways to perform quantization. We will only see three such process :
canonical quantization, path integral quantization and deformation quantization.

55.2.1 Canonical quantization

Canonical quantization is the most common and the first historically of the quantization
methods. Given a classical theory with a set of observable quantities {Ai}, we put each of
those quantities in correspondance with a linear hermitian operator acting on a projective
Hilbert space H .
Transformation of Lie brackets to commutators. For two classical observables Ac, Bc,
converted to linear operators on a Hilbert space Aq, Bq

{Ac, Bc} →
1

i~
[Aq, Bq] (55.1)

If we obtain the product of two non-commuting operators A,B for a given quantity, any
operator of the form αAB + βBA will be a valid quantization. The correct order will
usually be implied by constraints of symmetry and self-adjointness.

55.2.2 Path integral quantization

A rather simple if hard to define method of quantization is the path integral, for which
we need to define a measure on the set of possible configuration, giving us the transition
between two configurations as

K(C1, C2) =

∫ C2

C1

dµ[C] (55.2)

with the measure being usually defined on some variation of the Gaussian measure
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dµ = lim
n→∞

exp(i

∫
L dnx)

n∏
i=0

dCi
A

(55.3)

Measurable quantities will then be defined in a similar manner by considering the tran-
sition

A(C1, C2) =

∫ C2

C1

A(C)dµ[C] (55.4)

55.2.3 Deformation quantization

The idea of deformation quantization is to keep all quantities classical but to reproduce
the results of quantum theory by the choice of a specific product, the Moyal product ∗.
Since we want that in the classical limit ~→ 0, the results align with the classical theory,
this imposes the following conditions :

f ∗ g = fg +O(~)

[f, g] = i~{f, g}+O(~2)

55.2.4 BRST quantization

A lot of quantum systems involve constrained systems, for which the configuration space is
too large : many states are physically equivalent. When quantized, this causes a variety
of problem due to a too large Hilbert space, in particular the quantization procedure
produces either states for which the inner product isn’t positive definite or the path
integral diverges.

55.3 Symmetries

55.3.1 Symmetries

We need to define how symmetries act on the Hilbert space of quantum theories, as we
may need to change things such as gauge or coordinates. Generally speaking this will
map states by some transformation

S : H → H (55.5)

Hence a physical state ψ will get mapped to S(ψ). We will ask that this map be a bijection
so that two different states do not get mapped onto the same one, and we also require
that the probabilities of measurements do not change. In other words, for a measurement
of Â with eigenvectors ψn and eigenvalues An, we want

P (X = Ak) = P (X = A′k) = 〈ψ, ψk〉 = 〈S(ψ), S(ψk)〉 (55.6)

where A′k is the image of the eigenvalue. To make things more general, we can also use
the more general condition

|〈ψ, φ〉| = |〈S(ψ), S(φ)〉| (55.7)
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Definition 55.1. A symmetry transformation on a Hilbert space is a bijection S : H → H
such that

|〈ψ, φ〉| = |〈S(ψ), S(φ)〉| (55.8)

Proposition 55.2. Symmetry transformations have a group structure.

Proof. • Composition :

• Unity : The identity map idH is a symmetry transformation.

• Inverse :

• Associativity :

Wigner’s theorem :

Theorem 55.3. For a symmetry transformation S, there exists a transformation U which
is compatible with S such that U is either unitary or antiunitary.

55.4 Whatever

55.4.1 Hegerfeldt’s theorem

There are many interpretations and formalisms for quantum theory, but we will take the
standard couple where the quantum theory is defined by states in a Hilbert space (or any
equivalent formalism) and use some variant of the Copenhagen interpretation.
If we try to construct the usual construction of the quantum theory of a single particle,
we can probably assume the following basic structures :

• A separable Hilbert space H

• A projection PU on H for every open set U

• Invariance of measurements under diffeomorphism??? (in malament : unitary rep
of the translation group)

PU : the possibility of measurement of a particle in U if a measurement is performed.
Constraints from Malament :

• Translation covariance : for a translation a, PU + a = U(a)PUU(−a) [Replace by
a diffeomorphism?]

• Energy : for a future directed timelike vector ξ such that U(tξ) = eitH(ξ−) (GR
equivalent?)

• Localizability : if U1∩U2 = ∅ in the same achronal spacelike hyperplane, PU1PU2 =
PU2PU1 = 0

• Locality : If U1, U2 are spacelike related, PU1PU2 = PU2PU1

Localizability : particle can’t be in two places at once at the same time
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Theorem 55.4. If a quantum theory satisfies all outlined conditions, PU = 0 for every
open set U ⊂M.

This means that any quantum theory of single particles on a spacetime will be the trivial
theory of no particles.
(This theorem does not seem to apply to Bohmian quantum mechanics)

55.5 The relativistic point particles

The simplest possible quantum system in general relativity is the quantization of the
relativistic point particle, as we’ve seen earlier. While not the most realistic quantum
system for relativistic particles (except in circumstances such as the worldline formalism),
it remains a possible one. We can do it in two ways, using the standard action or the
Polyakov action.

55.5.1 Point particle action

As seen previously, the action of a massive particle can be expressed by

S = −
∫ τf

τi

m

√
gµν(x)

dxµ

dτ

dxν

dτ
(55.9)

with the Poisson brackets

{xa, pb} = δab (55.10)

The quantization of those variables as operators is straightforwardly the same as in clas-
sical mechanics, that is,

[x̂a, p̂b] = i~δab (55.11)

Both x̂a and p̂a are unbounded operators, which will lead to some difficulties for the
use of theorems pertaining to linear operators on Hilbert spaces and the definition of
derivatives. Instead we will switch to the Weyl operators, where for a given t, s ∈ R,

Q → U = eitx

P → V = eisp (55.12)

Proposition 55.5. The Weyl operators obey the Weyl form of the CCR

U(t)V (s) = e−istV (s)U(t) (55.13)

Proof.

Stone-von Neumann theorem :

Theorem 55.6. Up to unitary equivalence, there is only one representation for H =
L2(Rn, dnx) of the finite-dimensional commutation relation

[x̂a, p̂b] = i~δab (55.14)
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For any ψ ∈ L2(Rn, dnx),

x̂aψ(x) = xaψ(x)

p̂aψ(x) = −i~∂aψ(x) (55.15)

Weyl version (rigorous) :

− (55.16)

Something something rigged Hilbert space
Modes :

�ψ(x) = 0 (55.17)

55.5.2 Canonical quantization

55.5.3 Polyakov quantization

55.5.4 BRST quantization of the point particle

55.6 Quantization of extended objects

For later chapters, it will be useful to also perform quantization of the Polyakov action
of other extended objects, primarily the quantization of strings.
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56 Quantum field theory in curved spacetime

The point-particle quantization suffers from some pathologies if we attempt to include
interactions. To remedy the situation, the notion of field is introduced to replace point
particles.

56.1 Defining quantum field theories

56.2 Algebraic quantum field theory

The main method by which quantum fields are defined on spacetimes will be variations
on algebraic quantum field theory, or AQFT, based on Haag’s axioms. We will also use
perturbative QFT, which is not on as firm footing but will be necessary for heuristic
arguments for interacting theories.

For now, let’s define axioms for the free theory :

1. An algebraic quantum field theory is a net of abstract C∗-algebras mapping open
sets O of the spacetime manifold to a C∗-algebra A(O)

2. Isotony axiom : For O1 ⊂ O2, there is an embedding α12 : A(O1)→ A(O2)

3. States are defined as positive linear functionals ω : A→ C, such that ω(1) = 1

4. A state ω must satisfy the microlocal spectrum condition

5. Covariance axiom : For every isometry g of spacetime, there exists an automorphism
αg such that αgA(O) = A(gO)

6. Timeslice axiom : if Σ is a Cauchy surface, then A(Σ) = A(M)

7. Microcausality axiom : Elements of A(O1) commute with elements of A(O2) if the
two regions are spacelike separated (there are no causal curves connecting them).

Let us now define all those axioms

56.2.1 C∗-algebras and von Neumann algebras

C∗-algebras are algebras with the following properties :

• There is an automorphism ∗ such that for every A ∈ A, there exists an adjoint
element A∗ ∈ A, with properties

– (A∗)∗ = A

– (AB)∗ = B∗A∗

– (λA+B)∗ = λ̄A∗ +B∗

• There’s a norm ‖ · ‖ that satisfies ‖A∗A‖ = ‖A‖2
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• The algebra is complete with respect to this norm, that is, for any Cauchy sequence
(An)

‖An − Am‖ n,m→∞ 0

then there is an element A such that (An) converges to A.

H a Hilbert space, B(H) bounded linear operators on H. That is, for A ∈ B(H), there
is an upper bound for 〈Ax,Ax〉 for all unit vectors in H.

56.2.2 States and the GNS construction

States in AQFT are defined by linear functionals on the algebra, in a manner similar to
how Hilbert space vectors interact with linear operators on a Hilbert space. This is how
we will be able to construct the Hilbert space from the algebra later on via the GNS
construction.
States have the property of being positive, that is, for A ∈ A, ω(A∗A) ≥ 0, and normal-
ized, so that for the identity 1 ∈ A, we have ω(1) = 1, corresponding to the notion of
normalized Hilbert vectors 〈ψ, ψ〉 = 1.

Theorem 56.1. For a state ω, ω(A∗) = ω(A)

Proof. If we write decompose A into a ”real” and ”imaginary” part

A1 =
1

2
(A+ A∗)

A2 = − i
2

(A− A∗)

as A = A1 + iA2, then by linearity

ω(A) = ω(A1) + iω(A2)

ω(A∗) = ω(A1)− iω(A2)

The positive norm also gives us that

ω((A+ I)∗(A+ I)) = ω(A∗A) + ω(I) + ω(A+ A∗) (56.1)

meaning that if A = A∗, then ω(A) ∈ R, giving us ω(A∗) = ω(A).

Norm of an operator

‖ω‖ = sup
A 6=0

|ω(A)|
‖A‖

(56.2)

Theorem 56.2. A state ω defines a positive sesquilinear form on A.

Proof. For A,B ∈ A, we can verify that 〈A,B〉 = ω(A∗B) defines such a form.

• 〈B,A〉 = ω(B∗A) = ω((A∗B)∗) = ω(A∗B) = 〈A,B〉

• 〈A,A〉 = ω(A∗A) ≥ 0

247



GNS construction:

Theorem 56.3. Given a state ω on a unital C∗-algebra, we can define a Hilbert space
H with a ∗-representation π of A as linear operators on H such that π(A∗) = π(A)∗ and

ω(A) = 〈ω, π(A)ω〉 (56.3)

Proof. If we take the sesquilinear form defined earlier

〈A,B〉 = ω(A∗B) (56.4)

Consider the elements N ∈ A such that 〈N,N〉 = 0. By the Schwartz inequality, we have

|〈N,N ′〉| ≤ 〈N,N ′〉
1
2 〈N,N ′〉

1
2 = 0 (56.5)

|〈aN + bN ′, aN + bN ′〉| = 0 (56.6)

The set of zero norm vectors then forms a vector space N . To have our norm be positive
definite, we can define the equivalence class

Â = A/N (56.7)

An element Â ∈ Â is the set of elements A′ ∈ A

A′ − A ∈ N (56.8)

By the Schwartz inequality, we have that for A′, A′′ ∈ Â

∗ (56.9)

[SHOW IT]
Show that Cauchy sequences converge

56.2.3 Hadamard states and the microlocal spectrum
condition

Hadamard states : The divergent structure of the state is similar to that of Minkowski
space

ω() (56.10)

56.2.4 Automorphisms of isometries

For a Killing vector field Kµ generating a one-parameter group of isometries

φt :M→M (56.11)

there corresponds a one-parameter group of automorphisms αφt on the algebra A(O) such
that

αφtA(O) = A(φO) (56.12)

248



that leaves states invariant

∀A ∈ A, ω(αφtA) = ω(A) (56.13)

Identity transformation : αφ0 = IdA

Representation of the automorphisms as unitary operators on H

π(αφA) = Uφπ(A)U †φ (56.14)

56.2.5 Microcausality

56.2.6 Borcher algebra

The Borcher algebra, or Borcher-Uhlmann algebra, is a contructive example of a C∗-
algebra used for constructing QFT. It is constructed as a direct sum of algebras

S =
∞⊕
n=0

Sn (56.15)

with S0 = C and S = S (Rn), the Schwartz space on Minkowski space.
For a set of functions fn ∈ Sn, an element of the Borcher algebra is

f = (f0, f1, ..., fN , 0, 0, ...) (56.16)

with N <∞. The product of the algebra is defined by

fg =
n∑
i=0

fi(x1, x1, ..., xi)gn−i(xi+1, ..., xn) (56.17)

The involution of an element is then defined by

f ∗ = (f̄0, f̄1, ..., f̄N , 0, 0, ...) (56.18)

”Two formulations using differently described Hilbert spaces H1, H2 are equivalent if
there exists a unitary map U from H1 to H2 such that the operators A(1), A(2) corre-
sponding to the same observables are related by

A(2) = UA(1)U−1 (56.19)

Haag’s axioms :
Presheaf over open sets of spacetime to C∗-algebra.
Presheaf : For each open set U of M, there is an object F (U) in the category C
If V ⊆ U , there is a morphism F (U)→ F (V ) in C.
Net of abstract C∗-algebras O → A(O), O an open, finitely extended region of space.
Self-adjoint elements are observables that can be measured in O.
Ô the causal completion of O, then A(Ô) = A(O)
Algebraic quantum field theory : Operators belong to a C∗ algebra, states are linear
functionals on operators.
H a Hilbert space. B(H) the set of bounded linear operators on H

∀A ∈ B(H)∃‖A‖ (56.20)
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Category for AQFT :
Man : Category of manifolds
Obj(Man) : Oriented and time oriented globally hyperbolic Lorentzian manifolds
Mor(Man) : Oriented and time oriented preserving isometric embeddings, image is open
and causally compatible
C∗Alg : Category of C∗ algebras
Obj(C∗Alg) : unital C∗ algebras over C
Mor(C∗Alg) : injective unital C∗ algebra homomorphisms
Locally covariant QFT : Covariant functor A
If f1 : M1 → M and f2 : M2 → M are causally disjoint, then A(f1)(A(M1)) and
A(f2)(A(M2)) commute as subalgebras of A(M) (causality axiom)
If f : M → M′ is a Cauchy morphism (f(M) ⊆ M′ contains a Cauchy surface), then
A(f) is an isomorphism (time slice axiom)

56.3 Wavefunctional formalism

By a parallel with the point-particle quantization, we can also define the Hilbert space as
the space of square-integrable functions, on the space of test functions with some measure
defined on it.

H = L2(D(M), dµ) (56.21)

Measure : for Ψ ∈ D(M)

〈Ψ,Ψ〉 =

∫
Ψ(p)Ψ∗(p) (56.22)

Ψ = Ψ[φ(~x), t], p ∈ Σt

operators :

ΦΨ[φ(~x), t] = φ(~x)Ψ[φ(~x), t] (56.23)

Canonical momentum :

ΠΨ[φ(~x), t] = (
δ

δφ(~x)
+ V (φ(~x))Ψ[φ(~x), t] (56.24)

Requirements : obeys the CCR, hermitian

56.4 Wick products of operators

Define products on distributions via the wavefront set

56.5 Renormalization

Nguyen on the renormalization of distribution products
Renormalization group
Hadamard
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56.6 Perturbative Quantum Field Theory

The basic notions of perturbative quantum field theory are less rigorously defined, but
they are roughly these :

1. States are represented by rays in a Hilbert space H

2. Operator valued distributions are defined as acting on that Hilbert space. While
those distributions cannot formally be multiplied (unless one uses distribution alge-
bras), we allow it by considering some limit process on the product of their sequence
representation.

3. There are rules for removing divergences (for instance of those distribution prod-
ucts) from the theory, called renormalization or regularization schemes.

4. Among the operator valued distributions, we define in particular field operators
{φ̂i, ψ̂i}, which represent the value of the fields themselves. the fields φi are tensorial
(bosons), while the fields ψi are spinorial (fermions).

5. There are equations of motion satisfied by the field operators. They are linear for
free fields, non-linear if they possess self-interactions or interaction betweel different
fields.

6. The tensorial field operators obey commutation relations, while the spinorial field
operators obey anticommutation relations.

7. There is some splitting of the Hilbert space H into a Fock space
⊕∞

n=0 SνH
⊗n
1 ,

where H1 is interpreted as the Hilbert space of a single particle, and Sν is the
symmetrization operator S+ for bosons, or the antisymmetrization operator S− for
fermions.

8. INTERACTION PICTURE There exists some unitary operator U

9. The renormalized hamiltonian operator Ĥ is bounded from below. (in a frame,
there exists one or more ”vacuum states” that minimize the hamiltonian)

Relation between the free theory field operator φ0 and the interacting theory field operator
φ : We assume at at a time t = 0 the two field operators can be considered equal :

φ(0, ~x) = φ0(0, ~x) (56.25)

Time evolution :

e−iĤtφ(0, ~x)eiĤt = e−iĤtφ0(0, ~x)eiĤt (56.26)

Say something about 〈0|Ω〉 6= 0, which implies that
LSZ formula :
Haag’s theorem :

Theorem 56.4. For two irreducible sets of operator-valued distributions φ1,α[f, t], φ2,β[f, t],
defined on the Hilbert spaces H1 and H2, on which are defined continuous unitary rep-
resentations of the inhomogeneous SU(2)
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56.6.1 Path integral formulation

Assuming global hyperbolicity, take two Cauchy surfaces Σ1 and Σ2∫ φ2

φ1

dµ[φ] (56.27)

56.6.2 BRST quantization

Quantization of gauge fields
Gauge invariance : for φi representing all fields, coordinates and momentum :

δφi = Ri
αξ

α (56.28)

δSc[φ
i]

δφi
Ri
α = 0 (56.29)

Classical equation of motion

δSc[φ
i]

δφi
= 0 (56.30)

Implies
δSc[φ

i]

δφiδφj
Rj
α = 0 (56.31)

The second derivatives of S has zero eigenvalue eigenvectors at the stationary point ¿ no
inverse, propagator is ill defined.
Orbits of equivalent fields :

φi(ξ) = φiRi
αξ

α +O(ξ2) (56.32)

Need of a gauge fixing function fixed for a constant parameter

Fα(φ)− fα = 0 (56.33)

Admissibility condition :

det(
∂Fα

∂φi
Ri
α) 6= 0 (56.34)

Each admissible gauge function determines a surface (orbit in the principal bundle and
associated bundle???)

∆−1
F (φ) =

∫
DΩδ(F(φΩ)− f) (56.35)

Equivalent of the identity

−1

det(
∂ ~f

∂~x
)|~f=~λ =

∫
d~xδ(~f(~x)− ~λ) (56.36)

Coleman-Mandula theorem
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56.7 Quantum field theory on non-time orientable

spacetimes

Lacks of advanced and retarded solutions due to the lack of time orientability

56.8 Quantum field theory on non-globally

hyperbolic spacetimes

No Cauchy surfaces : no timeslice axiom

56.8.1 F-locality

F-locality : Every point in M should have a globally hyperbolic neighbourhood N such
that the induced algebra A(M, g,N) (the subalgebra of A(M, g,N) of polynomial fields
smeared by test functions supported by N) coincide with the intrinsic algebra A(M, g|N)
(on the spacetime (N, g|N).

Definition 56.5. A quantum field theory is called F-quantum compatible if it admits a
*-algebra of local observables that obey the condition of F-locality.

Examples of spacetimes that are F-quantum compatible (Timelike cylinder)

Examples that are not

56.8.2 Loss of unitarity

In quantum field theory, there is a particular importance on the time evolution of quantum
fields being unitary, that is, the time evolution operator U(t1, t2)|ψ(t1)〉 = |ψ(t2)〉 must
obey the property

UU † = U †U = I (56.37)

or, in other words, U † = U−1. Unitarity has the important consequence of preserving
probabilities

〈Ψ(t2)|Ψ(t2)〉 = 〈Ψ(t1)|Ψ(t1)〉 (56.38)

|Ψ(t2)〉 = U(t1, t2)|Ψ(t1)〉, U(t1, t2) = e−
i
~ (t2−t1)Ĥ (56.39)

If time evolution is unitary : Ĥ† = Ĥ

S-Matrix : Ŝ = e−iĤt, S-matrix unitary

Canonical QFT : Problem with the time ordering operator (not defined) and the possible
lack of spacelike hypersurfaces foliation, possibility to do it on partial Cauchy surfaces
up to the Cauchy horizon

253



56.8.3 Cutkoski cutting rule

Optical theorem :
S = 1 + iT

〈f |T |i〉 = (2π)4δ4(pi − pf )M(i→ f) (56.40)

Unitarity : i(T † − T ) = T †T

i〈f |T † − T |i〉 = i〈f |T |i〉∗ − i〈f |T |i〉 (56.41)

= i(2π)4δ4(pi − pf )(M∗(f → i)−M(i→ f)) (56.42)

path integrals

56.8.4 Stability

One of the main issue raised concerning closed timelike curves is stability. A wide variety
of non-causal spacetimes are unstable to small perturbations, such as objects trying to
cross them.
Blueshifting for closed null curves
Blueshifting in Kerr black hole, Misner space

56.8.5 Path integral
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57 Conformal field theory and the AdS/CFT

correspondance

57.1 Conformal field theory

Field theory is conformally invariant if its action is invariant under the conformal group.
It is called a conformal field theory (or CFT)

δS =
1

2

∫
dnxT µν(∂µεν + ∂νεµ) =

1

n

∫
dnxT µµ∂ρε

ρ (57.1)

If a stress energy tensor is traceless, the action is invariant under conformal transforma-
tion. (opposite isn’t true)
Conserved current under dilation x′µ = (1 + α)xµ, F(Φ) = (1− α∆)Φ :

jµD = −L xµ +
∂L

∂(∂µΦ)
xν∂νΦ +

∂L

∂(∂µΦ)
∆Φ (57.2)

= T µνx
ν +

∂L

∂(∂µΦ)
∆Φ (57.3)

Example : conformal scalar field

L = ∇µφ∇µφ+m2φ2 + ξRφ (57.4)

57.1.1 Conformal field theory in two dimension

An important subclass of CFTs is the conformal field theory on a (1 + 1) dimensional
spacetime.
Conformal transformation in 2 dimension : SO(3, 1), the Lorentz group
Conformal coupling constant is zero

L =
1

2
gµν∂µφ∂νφ (57.5)

Of particular use will be conformal field theory on Minkowski space, in which case we
can perform the Wick rotation t → iτ to do CFT in Euclidian space, and even moreso,
by the isomorphism between R2 and C, on C.
Conformal group on C :
A function f : U ⊂ C→ C is conformal iff holomorphic and its derivatives never vanish
on U .
We’ll use the notation ∂x + i∂t = ∂z = ∂ and ∂x − i∂t = ∂z̄ = ∂̄, zµ = (z, z̄) in which case
the Klein-Gordon equation becomes

∂∂̄φ = 0 (57.6)

with the usual plane wave solutions

φ = ekµz
µ

(57.7)

under the condition that kµk
µ = 0, or kz = −kz̄.

Quantization
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58 The AdS/CFT correspondance

(d+ 1) dimensional metric that is Poincaré invariant in d dimensions

ds2 = Ω(z)(−dt2 + dx2
i + dz2) (58.1)

Something something

ds2 =
L2

z2
(−dt2 + dx2

i + dz2) (58.2)

Rµν = − n

L2
gµν (58.3)

Inserted in EFE :

Λ = −n(n− 1)

2L2
(58.4)

R = −n(n+ 1)

2L2
(58.5)

Count the degrees of freedom

256



Part VII

Quantum gravity
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59 Generalities

Due to various arguments (that will be exposed in details in the section on semiclassical
gravity), it is likely that gravity itself needs to be quantized.
This presents some problems, as the notion of time is pretty deeply ingrained in quantum
theory, even in curved spacetime, but if we quantize the metric itself, time will itself be-
come part of the equation. Problems of quantizing gravity : define time, diffeomorphism
invariance
Quantization and background independence
There are a few heuristic arguments for getting the order of magnitude of the scale at
which quantum gravity effects might become important. A few of them are :

• Consider a particle with a Compton wavelength equal to its own Schwarzschild
radius,

λ =
h

mc
= rS =

2GM

c2

The

All of these explanations use quantities of around the Planck scale, which let us define
the Planck mass, Planck length, Planck time and Planck energy :

mp =

√
~c
G
, lp =

√
~c
G
, tp =

√
~G
c5
, Ep =

√
~c3

G

with the simple relations between them of lp/tp = c, Ep = mpc
2, lp = 2Gmp/c

2 and
Ep = ~2π/tp

59.1 Limits of quantum gravity

As our current theories of quantum field theory and general relativity are experimentally
well-verified, we want our theories of quantum gravity to reproduce their predictions.
Which means that in the limit ~→ 0, it should reduce to general relativity in some way,
and in the limit G→ 0, it should reduce to quantum field theory. The full set of theories
we would like in various limits is represented by the so-called Bronstein hypercube of
quantum gravity, representing the limits of various theories along the axis of G, ~, c, and
N , the number of degrees of freedom. With N suppressed, it gives
The limits N ≈ 1 and N →∞ can be represented by, for instance,

• Classical mechanics → statistical mechanics

• Quantum mechanics → quantum statistical mechanics

• Special relativity → classical field theory

• Regge calculus → general relativity

• Relativistic quantum mechanics → quantum field theory

The limits for quantum gravity will of course depend on the specific theory we’re dealing
with.
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Quantum gravity QFT

General relativity Special relativity

Newtonian gravity

Quantum mechanics

Classical mechanics

Schrödinger-Newton
equation

G→ 0

~→ 0

c→∞

Figure 12: Limiting cases

59.2 The Schrödinger-Newton equation

It will be of some interest to consider the non-relativistic limit of quantum gravity, as it
is the only one that has been well verified experimentally.
The Schrödinger-Newton equation is quite simply the Schrödinger equation with a quan-
tization of the Newtonian classical potential, that is

i~
∂Ψ

∂t
(~x, t) = − ~2

2m
∆Ψ(~x, t) + VΨ(~x, t) +mΦΨ(~x, t) (59.1)

with the Newtonian potential

∆Φ(~x, t) = 4πGm|Ψ|2 (59.2)
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60 Semiclassical gravity

The simplest form of unifying quantum field theory and general relativity is to leave
them each as they are and simply connecting them by the stress-energy tensor (and the
quantum field theory in curved spacetime that we have seen previously), with the form

Tµν = 〈ψ, T̂µνψ〉 (60.1)

where we define an operator for the stress-energy tensor. The Einstein field equation
then just becomes

Rµν −
1

2
Rgµν + Λgµν = 〈ψ, T̂µνψ〉 (60.2)

This has the benefit of being the simplest possible theory of quantum gravity, and it is
expected that any other theory of quantum gravity should be approximated by it within
some limit.

60.1 Quantization of the stress-energy tensor

If we defined our quantum field theory with respect to a quantization procedure, the
simplest way to obtain the stress energy tensor is via the quantization procedure of the
classical stress-energy tensor, that is,

T µν(φ, x)→ T̂ µν(φ̂, π̂) (60.3)

This has the problem of not being immediately well defined, as we saw previously, since
the stress-energy tensor will usually be defined as the product of fields at the same point.
We will instead start off by defining the stress-energy bi-tensor, which has the benefit of
being well-defined at least for free fields.

T µν(φ, x, y)→ T̂ µν(φ̂, π̂, x, y) (60.4)

As quantum fields are defined as operator-valued distributions, this will be well-defined in
the case where the distribution defined by the expectation of the stress-energy tensor will
itself be a bitensor (that is not too divergent). In this case, we’ll define the stress-energy
tensor as the coincidence limit

T µν(x) = lim
y→x
〈T̂ µν(x, y)〉ψ (60.5)

This will require some renormalization, even for the free field, similar to the renormal-
ization of the Hamiltonian in QFT.

60.1.1 The scalar field

The simplest example of a semiclassical system is as usual the scalar field, with stress-
energy tensor

Tµν = ∂µφ∂νφ−
1

2
gµν(g

ρσ∂ρφ∂σφ+m2ϕ2) (60.6)
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Its quantization will obviously lead to products of distributions. Instead, we will use the
fact that for the propagator D(f, g), we have the property

D(f, g) = 〈φ[f ]φ[g]〉0 (60.7)

By linearity of the sesquilinear product, we also have that

∇µD(f, g) = 〈(∇µφ[f ])φ[g] + φ[f ](∇µφ[g])〉0 (60.8)

∇ν∇µD(f, g) = 〈(∇ν∂µφ[f ])φ[g]+φ[f ](∇ν∂µφ[g])+(∇µφ[f ])(∇νφ[g])+(∇νφ[f ])(∇µφ[g])〉0
(60.9)

Dµν(x, y, γ) =
1

6
(∇x

µγν
α(x, y, γ)∇y

α + γµ
α(x, y, γ)∇y

α∇x
ν)

− 1

12
gµν(x)γαβ(x, y, γ)∇x

α∇
y
β

− 1

12
(∇x

µ∇x
ν + γµ

α(x, y, γ)∇y
αγν

β(x, y, γ)∇y
β)

+
1

48
gµν(x)(gαβ(x)∇x

α∇x
β + gαβ(y)∇y

α∇
y
β)

− Rµν(x) +
1

4
gµν(x)R(x) (60.10)

Classical limit :

T µνc = lim
~→0
〈ψ, T̂µνψ〉 (60.11)

60.2 Domain of validity

It is generally assumed that semiclassical gravity will not be a correct description of
quantum gravity. One of the common argument for this is the following :
Consider two quantum state |ψ1〉 and |ψ2〉, such that the support of 〈Tµν〉1 and 〈Tµν〉2
are disjoint. If we take the state to be

|ψ〉 =
1√
2

(|ψ1〉+ |ψ2〉) (60.12)

then the initial stress-energy tensor will be

Tµν =
1

2
〈Tµν〉1 +

1

2
〈Tµν〉2 (60.13)

After a measurement performed that would collapse the wavefunction to either ψ1 or ψ2,
the stress energy tensor will become (for let’s say ψ1)

Tµν = 〈Tµν〉1 (60.14)

The stress-energy tensor has doubled in the first region and totally disappeared in the
second, and this regardless of their separation. Due to this non-local effect, it is assumed
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that the metric itself has to be described by a quantum field, and that semiclassical
gravity can only be an appropriate description of when it nears classical behaviour.
Fluctuations of the stress energy tensor : cf ”Gravitational radiation by quantum sys-
tems”, should be

〈Tµν(p)Tρσ(q)〉 ≈ 〈Tµν(p)〉〈Tρσ(q)〉 (60.15)

60.3 Renormalization of the stress-energy tensor

As with most products of field operators, the stress-energy tensor operator requires some
renormalization. Renormalization via the coincidence limit
Dimensional regularization

60.4 Effective action

It is also possible to express semiclassical gravity by defining an effective action W so
that

TEff
µν = −2

1√
−g

δW

δgµν
= 〈Tµν〉ψ (60.16)

We then need to find an effective action W such that its functional derivative will give
us the appropriate stress-energy tensor.

60.5 Energy conditions

60.6 Quantum aspects of chronology protection

One of the application of semiclassical gravity is that we can see the effect of Cauchy
horizons on the stress energy tensor.
As the equations for free fields will usually be second order hyperbolic partial differential
equations, it helps to express the propagator in the Hadamard form :

GR(x, y) = ~
∑
γ

√
∆γ(x, y)

4π2
[

1

σγ(x, y)
+ vγ(x, y) ln(|σγ(x, y)|) +$γ(x, y)] (60.17)

The Hadamard form of the Green function has the benefit of outlining the singular
structure, as it can be shown that $γ(x, y) and vγ(x, y) both converge to proper functions
in the limit x→ y, so that we may focus on the remaining terms for divergences.
Stress energy tensor :

Tµν(x) = lim
x→y

Tµν(x, y) = lim
x→y

DµνGR(x, y) (60.18)

Stress energy tensor renormalization :

TRenµν (x) = (60.19)
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61 Stochastic gravity

Stochastic gravity is a compromise between semiclassical gravity and a full theory of
quantum gravity. The metric remains classical, but a stochastic term that depends on
the fluctuations of the stress-energy tensor is added.

t̂µν = T̂µν − 〈T̂µν〉Î (61.1)

Noise kernel bitensor :

Nµνρσ(p, q) =
1

2
〈{t̂µν , t̂ρσ}〉 (61.2)

Nµνρσ(p, q) = Nρσµν(q, p) (61.3)

t̂µν is finite since we substract the UV divergences.
T is self-adjoint ¿ N is real and positive semi-definite since it’s the expectation value of
an anticommutator. Classical gaussian stochastic tensor ξµν

〈ξµν(p)〉s = 0, 〈ξµν(p)ξρσ(q)〉s = Nµνρσ(p, q) (61.4)

ξµν = ξνµ and ∇muξµν = 0. 〈·〉s is a classical stochastic average. Correction to the metric
tensor g → g + h
Einstein-Langevin equation :

G(1)
µν [g + h] = κ(〈T̂ (1)

µν [g + h]〉ren + ξµν [g]) (61.5)

g is a solution to the semiclassical equation.
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62 Covariant quantum gravity

Covariant gravity is one of the first attempt at the quantization of gravity, based on
the canonical quantization of the Pauli-Fierz theory of gravity. As a simple interacting
QFT on flat space, it is expected to work by the exchange of gauge bosons, the graviton,
represented by the perturbative metric field hµν , or the perturbative frame field, hµ

a, if
fermions are to be added to the theory.
As we have seen earlier, Pauli-Fierz on a Minkowski background has the following La-
grangian

L = −1

4
hµν,σh

µν,σ +
1

2
hµν,σhσν,µ +

1

4
(∂σh)(∂σh)− 1

2
(∂σh)(∂νh

νσ) + V (h)

With V a potential that will depend on h and its first derivatives. Its equation of motion
being

�hµν − .... (62.1)

If we limit for now our attention to the linear part
Hamiltonian :
Let’s define N = −h00, Ni = 2h0i

L = −1

4
hµν,σh

µν,σ +
1

2
hµν,σhσν,µ +

1

4
(∂σh)(∂σh)− 1

2
(∂σh)(∂νh

νσ)

= (62.2)

π =
∂L

∂ḣij
= (62.3)

The operator ĥ for the free theory obeys, in the de donder gauge :

�hµν = 0 (62.4)

Free wave solutions for k2 = 0 :

hµν = εµν(~k)e±ik
αxα (62.5)

Polarization obeys [why]

kµεµν(~k) = εµν(~k)kν = 0, εµ
µ = 0 (62.6)

Choice :

εν = 0, kiεij(~k) = 0, εi
i = 0 (62.7)

Propagator :

h̃µν = k−2 (62.8)

hµν =

∫
k−2 (62.9)
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Figure 13: Tree-level gravitational process

Graviton propagator :
We expect

iPµν,ρσ
k2 + iε

(62.10)

[eµνpµp
′
ν −

1

2
eρ(ηµνpµp

′
ν −m2)] (62.11)

62.1 Couplings of the graviton to matter

hµν =
κ

k2
(Tµν −

1

2
ηµνT ) (62.12)

Coupling to scalar fields
Coupling to EM
Coupling to fermions

62.2 Renormalization

Renormalization
1-loop
2-loop

62.3 Classical limits

Tree level approximation
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63 Canonical quantum gravity

A simple way to quantize gravity is to simply use canonical quantization on the Hamil-
tonian theory we already have, ADM gravity. As the GR Hamiltonian is identically zero,
this will go through the usual process of BRST quantization.
First it is important to define the field variables we’ll be using, by performing canonical
quantization on the Lie brackets. For ADM, these were :

{q} = (63.1)

Wheeler-DeWitt equation :

Hψ = 0 (63.2)

Problem of interpretation of the equation

63.0.1 Thermal time hypothesis

Quantum theory generally uses the time
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64 Loop quantum gravity

Hamilton-Jacobi equation of general relativity :

F ij
ab(~x)

δS[A]

δAia(~x)

δS[A]

δAjb(~x)
= 0 (64.1)

Ashtekar variables
Spatial tetrads

Ea
µ = eaµ + ebµn

anb (64.2)

Properties : Ea
µna = 0, Ea

µn
µ = 0

Haar measure : measure on locally compact group ¿ gives integral for SU(2)
Properties : for S ⊂ G, g ∈ G, µ(gS) = µS
for compact S, µ(S) <∞
Normalization condition : µ(G) = 1

64.1 Spin networks

Spin networks
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65 Lorentzian and Euclidian gravity

Another natural method of quantizing gravity is by using the path integral quantization
method, which has the benefit of only requiring the Lagrangian, but suffers from having
often poorly defined objects.
The basic idea will be to try and compute the transition amplitude between two mea-
surements of the gravitational field and other fields on some spacelike hypersurface

S[hi, φi;hf , φf ] =

∫ hf ,φf

hi,φi

Dg[x]Dφ(x) exp[i

∫ f

i

dt

∫
dn−1x(LEH + LM)] (65.1)

As for other field theories, the Lorentzian path integral is hard to define properly, so we
will also define the Euclidian transition function, defined by

S[hi, φi;hf , φf ] =

∫ hf ,φf

hi,φi

Dg[x]Dφ(x) exp[−
∫ f

i

dt

∫
dn−1x(LEH + LM)] (65.2)

with a Riemannian metric rather than a Lorentzian metric.
Lorentzian : ∫ S2

S1

dµ[g]eiSEH [g] (65.3)

Euclidian action ∫ S2

S1

dµ[g]e−SR[g] (65.4)

This present a few problems :
There is no general Wick rotation from Lorentzian metric to Riemannian metric. While
this process works for the Minkowski space

−dt2 +
∑
a

dxadxa
t→it−−→ dt2 +

∑
a

dxadxa (65.5)

or even a static spacetime

−dt2 + gabdx
adxb

t→it−−→ dt2 + gabdx
adxb (65.6)

this will not be true in general, for instance, for any metric with timelike crossterms

−dt2 + 2gatdtdx
a + gabdx

adxb
t→it−−→ −dt2 + 2igatdtdx

a + gabdx
adxb (65.7)

which is not at all a Riemannian manifold. The opposite procedure of applying the Wick
procedure to a Riemannian metric will also likewise not produce a Lorentzian metric in
general.
Show that the Euclidian action is unbounded from below via Weyl transformation
Einstein-Hilbert action in 2D :

SH [g(x)] = −
∫
d2x
√
−g 1

2κ
[R(x)− 2Λ] (65.8)

Gauss Bonnet theorem :

1

2

∫
M
RdA+

∫
∂M

kgdS +
∑
i

θi = 2πχ(M) (65.9)
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Without boundaries,

1

2κ

∫
M

√
−gRd2x = 2

π

κ
χ(M) (65.10)

SH [g(x)] = −
∫
d2x
√
−gΛ

κ
= −Λ

κ
V [g] (65.11)

Path integral :

Z =

∫
Dg(x)e−

i
~SHE [g] =

∫
Dg(x)e

iΛ
~κV [g] (65.12)

Euclidian path integral :

Z(Λ) =

∫
D[g(x)]KMe

− Λ
~κV [g] (65.13)

G (65.14)
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66 String theory

Instead of the usual attempts at some matter of quantization of the gravitational action,
string theory takes the route of a quantum theory that reproduces the predictions of
general relativity to some limit.
Originally conceived as a theory of strong interaction, it is based on the quantum theory
of the relativistic string seen previously, with the Polyakov action

S[X, γ] = − T

2

∫
Σ

d2σ
√
−γγab(σ)gµν(X)∂aX

µ(σ)∂bX
ν(σ)

+

∫
Σ

d2σ(λ1 + λ2
(2)R)] +

∫
∂Σ

dlK (66.1)

T =
1

2πα′
(66.2)

`s = 2π
√
α′ (66.3)

Ms =
1√
α′

(66.4)

T : string tension α′ : Regge slope `s : string length Ms : string mass scale

66.1 The relativistic string

The basic object used in string theory is the relativistic string, that we have seen in
chapter [x]. The 2-dimensional timelike submanifold of the relativistic string will be
referred to as the worldsheet, while the 1-dimensional submanifold is what is referred to
as the string.
More generally, string theory may involve (p+ 1)-dimensional timelike submanifolds (the
worldvolume) which intersect achronal spacelike surfaces with p-dimensional submani-
folds, called a p-branes. Strings are then 1-branes and point particles 0-branes.
The spacetime manifold itself is referred to as the target space of the theory.
The action of the worldsheet is defined once again by the Brink-Di Vecchia-Howe-Deser-
Zumino action, or Polyakov action.

S[X, γ] = − 1

4πα′

∫
dτdσ

√
−γgµνγab∂aXµ∂bXµ (66.5)

Induced metric : hab = gµν∂aX
µ∂bXµ

This is similar to a set of conformal scalar fields with internal symmetry SO(1, n− 1)
Symmetries :
If the target space is Minkowski space, Poincaré invariance in the target space :

X ′µ(τ, σ) = Λµ
νX

ν(τ, σ) + aµ (66.6)

Diffeomorphism invariance

S =
1

α

∫
d2σ

2π

√
−γ[(∂aX

µ)P a
µ +

1

2
γabP

a
µP

bµ] (66.7)
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(2πα′)−1 is the string tension and mass per unit length, P auxiliary field
Conformal gauge :

γab = ηab (66.8)

η the 2D Minkowski metric
In this gauge :

P µ
a = −∂aXµ, ∂aP

aµ = 0 (66.9)

γab∂a∂bX
µ (66.10)

66.1.1 The light-cone gauge

A common way of solving the equation of motion in string theory is the use of the light-
cone gauge. If we pick a set of null-coordinates on the worldsheet,

σ± =
1√
2

(σ1 ∓ σ0) (66.11)

the worldsheet metric then simply becomes

ds2 = −dσ+dσ− (66.12)

with components γ+− = γ−+ = −1/2 and γ+− = γ−+ = −1, giving the raising and
lowering operators

(V+dx
+ + V−dx

−)] = (66.13)

Partial derivatives :

∂± =
∂

∂σ±
(66.14)

Measure :

d2σ =
1

2
dσ+dσ− (66.15)

Polyakov action in light cone coordinates :

S = T

∫
d2σηµν∂+X

µ∂−X
ν (66.16)

∂+∂−X
µ = 0 (66.17)

X =
1

2
[X̂+(τ + σ) + X̂−(τ − σ)] (66.18)

[...]
expansion :

∂+∂−X mu = 0 (66.19)

Left-moving and right-moving waves on the string
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Xµ(σ) = Xµ
L(σ+) +Xµ

R(σ−) (66.20)

For a closed string : Fourier expansion as

Xµ
R(σ−) =

1

2
(xµ + cµ) +

1

2

2πα′

`
pµσ− + i

√
α′

2

∑
n∈Z,n 6=0

1

n
αµne

− 2π
`
inσ−

Xµ
L(σ+) =

1

2
(xµ − cµ) +

1

2

2πα′

`
pµσ+ + i

√
α′

2

∑
n∈Z,n 6=0

1

n
α̃µne

− 2π
`
inσ+

xµ : center of mass position of the string at τ = 0, pµ : momentum of the string

qµ = `−1

∫ `

0

dσXµ = xµ +
2πα′

`
pµτ (66.21)

∫
dσΠµ(τ, σ) =

1

2πα′

∫ `

0

dσẊµ = pµ (66.22)

66.2 String quantization

The basic

66.2.1 Canonical quantization

Canonical commutation relations

[X̂µ(τ, σ), Π̂ν(τ, σ′)] = iηµνδ(σ − σ′)
[X̂µ(τ, σ), X̂ν(τ, σ′)] = [Π̂µ(τ, σ), Π̂µ(τ, σ′)] = 0

This implies

[xµ, pν ] = iηµν

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mδm+n,0η

µν

[α̃µm, α
ν
n] = 0

X,Π are hermitian, implying αµm = (αµ−m)†

Something something BRST quantization

66.2.2 Light-cone quantization

Since we are in Minkowski target space, X+ = X+, X− = X− [CHECK]
Open string, τ ∈ R, σ ∈ [0, l]
Light cone : σ± = 1√

2
(τ ± σ)

X± = 1√
2
(X0 ±X1)

Light cone gauge :
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X+ = τ

∂σγσσ = 0

det γab = −1

Conditions related to the Poincaré invariance of the target space, diffeomorphism invari-
ance of the worldsheet and conformal invariance

S[X, γ] = − 1

4πα′

∫
dτdσ[−2γab∂aX

+∂bX− + γab∂aX
i∂bXi]

Under reparametrization of σ, γσσ(− det γab)
−1/2dσ is invariant.

Define the measure

dl = γσσ(− det γab)
−1/2dσ (66.23)

γ = −1 implies −γττσσσ − γ2
στ = −1

γττ =
−1 + γ2

στ

σσσ
(66.24)

For the inverse metric, we use the usual formula of the inverse of a 2× 2 matrix :

γττ = −γσσ
γτσ = −γτσ

γσσ =
1− γ2

στ

σσσ

66.3 The bosonic string

1

α′

∫
P 0

i(σ) = i
δ

δXi(σ)
(66.25)

[
δ

δXi(σ1)
, Xj(σ2)] = δij2πδ(σ2 − σ1) (66.26)

66.4 String interactions and vertex

Unlike most other quantum theories, string theory needs no interaction terms. Interaction
is dealt by summing over every possible geometry

Z =

∫
DXDgeiSp[X,g] (66.27)

Path integral, sum over 2-manifolds with boundary conditions (cobordism)
Scattering : initial condition of open strings and closed string, final condition same, the
scattering matrix is the interpolation of all possible topologies and geometries in between∑

Top

∫
Dγ(σ)DX(σ) (66.28)
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66.5 Superstrings

Define the worldsheet over a supermanifold instead of a manifold

66.6 Compactification

The physical universe seems to be a (3 + 1) dimensional spacetime, while the current
state of string theory requires at least 10 total dimensions to function.
Explaining the low apparent dimensionality of the universe
Decomposition of the target space M into

M =Md ×Mn−d (66.29)

with n the dimension of the target space and d the dimension of physical space
Compactification scale : Mc = R−1, R the typical length of Mn−d
should be smaller than the string scale Ms = 1/ls, Mc �Ms.
Usual experiments : E �Mc �Ms

Example : Kaluza-Klein as R4 × S
Coordinates (xµ, x4), (xµ, x4) ∼ (xµ, x4 + 2πR)

ds2 = gµνdx
µdxν + dx4dx4 (66.30)

Φ(x) =
∑
n∈Z

φn(xµ)e
inx4

R (66.31)

Solution of the wave equation :

(∇µ∇µ − n2

R
)φn = 0 (66.32)

Equivalent to particles of mass nMc. If E �Mc, we can ignore any mode n > 0.
Compactification of bosonic string on M =M9 × S
Calabi-Yau manifold

66.6.1 Orbifolds

66.7 String field theory

Definition with field theory

QBΨ = 0 (66.33)
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67 Causal Dynamical Triangulation
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68 Non-commutative geometry

Elements [uv] defined by the Lie bracket, defines a Lie algebra of vector fields (algebra
of diffeomorphisms), called Ξ.
Universal envelopping algebra UΞ defined by the tensor algebra over C uv generated by
Ξ and uv − vu− [uv].
Natural Hopf algebra structure. For the unit element 1,

∆(u) = u⊗ 1 + 1⊗ u
∆(1) = 1⊗ 1

ε(u) = 0

ε(1) = 1

S(u) = −u
S(1) = 1

Twist of a Hopf algebra
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69 Causal sets

Causal set theory is an attempt to turn the structure of spacetime itself in a quantum
theory. The basic idea stems from the abstract causal spaces defined in [x], in which
the structure of spacetime itself is defined in the abstract. Such structures are a bit too
general for causal set theory, as we want spacetime to be discrete as well. To guarantee
discreteness, we will add some requirements of local finiteness.

Definition 69.1. A causal set , or causet, is a set C with a partial relation order ≺ with
the following properties

1. Transitivity : p ≺ q ≺ r ⇒ p ≺ r

2. Irreflexivity : p ≺ p

3. Local finiteness : Card({q ∈ C|p ≺ q ≺ r}) ∈ N

The ordering roughly corresponds to the strict causal relation p < q seen previously, but
with the added condition that there are only finitely many points in the intersection of
the future and the past of two points.
No spacetime is a causal set, since the axiom of local finiteness runs afoul of its manifold
structure, but it is possible to embed of causal sets in them. For instance, if we pick any
covering of M by non-overlapping compact subsets, and pick a finite number of points
in each of these subsets, this will generate a causal set.
On the other hand, some causal sets cannot be embedded in any manifold.
To generate a causal set from a given spacetime, the method used is sprinkling : we select
random points in it according to a Poisson process. That is, for any compact region of
volume V , we select n elements with probability

P (n) =
(ρV )ne−ρV

n!
(69.1)

where ρ is the fundamental density, a parameter of the theory, probably related to the
Planck density.
A manifold (M, g) is said to approximate a causet if C has a relatively high probability
of coming from a springling process on it. C is then said to be faithfully embeddable in
M.
Causal set fundamental conjecture : two wildly different spacetimes on a large scale
cannot be faithfully approximated by the same sprinkling.
Function D(C) : approximate dimension of the manifold
Estimators for timelike distances, volumes, etc
The volume is ≈ proportional to the cardinality of the causet, so
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70 Entropic gravity

Gravity as emergent property of entropy of matter

70.1 Entropy

For a macroscopic configuration (or macrostate) X, the entropy associated is

S(X) = kB ln(Ω(X)) (70.1)

with Ω(X) the number of microstates associated with this macroscopic configuration.

70.2 Entropic forces

Entropic force : effective macroscopic force generated by the tendency to increase entropy.
No fundamental field associated with an entropic force.
In the canonical ensemble, entropic force ~F associated to a macrostate partition {X} is

F (X0) = T∇XS(X)|X0 (70.2)

T the temperature, S the entropy.
Examples : colloid molecules suspended in a thermal environment of smaller particles,
osmosis, polymer molecules

F ≈ −αkBT 〈x〉 (70.3)

70.3 Entropic gravity

Timelike Killing vector ≈ temperature and entropy gradient
Geodesic motion ≈ entropic force
BTZ black hole in quantum gravity
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Part VIII

Specific spacetimes
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71 Minkowski space and variants

Minkowski space is the simplest example of a spacetime, as it is maximally symmet-
ric, topologically trivial and almost every of its tensor quantities vanish in Cartesian
coordinates. It also offers the benefit of Cartesian coordinates being defined on a single
coordinate patch for the whole manifold. As such, it presents many interesting properties.

ds2 = −dt2 +
n∑
i=1

dx2
i (71.1)

Γσµν = 0 (71.2)

Rσ
µνρ = 0 (71.3)

Quotient manifolds from Minkowski space
Cylinder : identification of (xµ) and (xµ + naµ) (quotient Rn/Z)
Important : spacelike hypersurfaces Σt have points noted by ~x(t) such that ~x(t) = (t, ~x)
Induced metric on Σt : g|Σt = δ, with δ(∂i, ∂j) = δij
Product δ(~x(t), ~y(t)) is noted ~x(t) · ~y(t), ~x · ~x = x2, |x| =

√
~x · ~x

Differential operators on Σt : ∂i = ~∇, δij∂i∂j = ∆

71.1 Isometries of Minkowski space

As Minkowski space is maximally symmetric, it admits the full (n2 +n)/2 Killing vectors.
In Cartesian coordinates, the common choice is

• n translations ∂µ

• (n2 − n)/2 rotations xµ∂ν − xν∂µ

The Killing vectors are usually decomposed into time translations ∂t, space translations
∂i, spatial rotations xi∂j − xj∂i and boosts xi∂t− xt∂i. In addition, ∂t is a static timelike
vector field, as it is orthogonal to the Cauchy surface Σt.
Two additional important isometries of Minkowski space are the discrete isometries of
time reversal and space reversal, T (t, xi) = (−t, xi) and P (t, xi) = (t,−xi). Those have
the effects of reversing the time and space orientation of the manifold.
The full group of isometries generated by those Killing vectors is called the Poincaré
group, noted RnoO(1, n−1), with Rn representing the translation group and O(1, n−1)
the full Lorentz group, composed of time and space reversal as well as all rotations.

71.2 Geodesics of Minkowski space

The geodesics of Minkowski space are simply the lines of Euclidian space, as can be shown
easily from its geodesic equation

d2xµ

dλ2
= 0 (71.4)

From basic calculus, we can deduce that the geodesic equation has the following solution
for initial conditions (x0, v0)
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xµ(λ) = vµ0λ+ xµ0 (71.5)

With the constant tangent vector vµ = vµ0 . This is indeed the equation of a straight line.
Geodesic is timelike if

(vt)2 > |~v| (71.6)

null if

(vt)2 = |~v| (71.7)

spacelike if

(vt)2 < |~v| (71.8)

71.3 Causality

From the fact that it is both static and diagonal, we already know that Minkowski space
is causal.
Prove that it is globally hyperbolic (from the null geodesics)
Any null geodesic will be of the form

xµ(λ) = vµ0λ+ xµ0 (71.9)

Show that it contains no singularities

71.4 The Fourier transform

On Minkowski space, as well as any quotient manifold, we can define the Fourier transform
of a function
Pontryagin duality

71.5 Solution of classical fields

Klein Gordon :

(−∂2
t +

n∑
i=0

∂2
xi

+m2)ϕ = 0 (71.10)

Green function :

(−∂2
t +

n∑
i=0

∂2
xi

+m2)G(x, y) = δ(x− y) (71.11)

Fourier transform

x (71.12)

Dirac, Maxwell equation (classical and quantum)
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Maxwell in Lorentz gauge :

�Aµ = −∂2
tA

µ + ∆Aµ = jµ (71.13)

71.6 Important coordinates on Minkowski space

71.6.1 Spherical coordinates

t = t (71.14)

r =
√
~x · ~x (71.15)

71.6.2 Null coordinates

for a spacelike Cartesian coordinate x, take

u = t− x (71.16)

v = t+ x (71.17)

71.6.3 Rindler coordinates

For an observer with constant acceleration along x
In the region x > 0

t = a−1 arctanh(
t′

x′
)

x =
√

(x′)2 − (t′)2

ds2 = −g2x2dt2 + dx2 + dy2 + dz2 (71.18)

71.6.4 Born coordinates

For an observer rotating at a constant angular velocity
Rigidly rotating coordinates : 

t =
√

1 +R2Ω2τ

r = r′

φ = φ′ + Ωτ

(71.19)

71.7 Quantum Minkowski space

Minkowski space in covariant quantum gravity :
Background metric of η, vacuum state for the gravitons
Measurements of the metric :

〈Ω|hµν [f ]|Ω〉 (71.20)
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Transition function :

〈Ω,
∑
n

∫
d3pnp〉 (71.21)

For LQG : trivial spin network
For string theory
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72 de Sitter space

Pseudosphere submanifold of Rn+1

Equivalent to a quotient of hyperbolic space H(n−1)
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73 Anti de Sitter space
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74 Friedmann-Lemâıtre-Robertson-Walker

spacetime

Homogeneous spacetime :
Homogeneous, isotropic spacetime :

ds2 = −dt2 + a2(t)
n∑
i=1

dx2
i (74.1)

Conformal expression :
switch to conformal time

τ =

∫ t

0

a(t′)dt′ (74.2)

∂t

∂τ
=

1

a(τ)
(74.3)

We write a(t(τ)) = a(τ), giving us

ds2 = a2(τ)(−dτ 2 +
n∑
i=1

dx2
i ) (74.4)

The FLRW metric is then conformally equivalent to Minkowski space.

74.1 Isometries

Maximally symmetric on the spacelike hypersurface : ((n− 1)2 +n− 1)/2 Killing vectors
Translations ∂i and rotations xi∂j − xj∂i

74.2 The assumption of homogeneity

The FRLW metric is used in cosmology under the assumption that our universe is ho-
mogeneous, which is obviously wrong (you may check this experimentally by observing
an object in your vicinity with a density higher than the same volume of air also in your
vicinity). But it is assumed that at large enough scale, it is in some sense homogeneous,
which gives that the FRLW metric is in some sense approximately true. We will make
this notion clearer.
One important theorem for the observation of homogeneity is the EGS theorem :

Theorem 74.1. If every observer measures a radiation field to be exactly isotropic during
a time interval I, then the spacetime is homogeneous and isotropic.

Applied to the cosmic microwave background, this gives us a good argument for homo-
geneity. But the CMB is not perfectly isotropic (although small we have variations of the
order of one in 105). We then have to use weaker assumptions.

74.3 FRLW universe and the matter content

The factor a depending on the stress energy tensor
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75 Schwarzschild spacetime

The Schwarzschild metric applies to spherically symmetric spacetimes that are vacuum
solutions on the whole manifold or for some range r > r0, by considering the subman-
ifold where the stress-energy tensor vanishes. As per (ref), the metric of a spherically
symmetric spacetime

ds2 = ds2 = −f(r, t)dt2 + g(r, t)dr2 + Y 2(r, t)(dθ2 + sin2(θ)dϕ2) (75.1)

75.1 Birkhoff theorem and the Schwarzschild

solution

[REAL THEOREM MUCH MORE COMPLICATED CF STEPHANI]

Theorem 75.1. A spherically symmetric vacuum solution of the Einstein field equations
with Λ = 0 must be static and asymptotically flat.

Proof.

This means that our metric must be both spherically symmetric and static

ds2 = −f(r)dt2 + g(r)dr2 + Y 2(r)(dθ2 + sin2(θ)dϕ2) (75.2)

ds2 = (1− 2M

r
)dt2 − (1− 2M

r
)−1dr2 − r2(dθ2 + sin2(θ)dφ2) (75.3)

75.2 Source of the Schwarzschild metric

It may seem strange that even for a totally vacuum spacetime, we end up with the
relativistic equivalent of a point mass solution.
While the stress-energy tensor is everywhere vanishing, we can verify that the total mass
associated with the spacetime will be indeed the parameter M .

75.2.1 Komar mass of a Schwarzschild black hole

Komar mass of the metric

75.2.2 Schwarzschild metric as a distribution

Distributional Schwarzschild :

75.3 The exterior solution

The Schwarzschild coordinate patch is only defined on the maximum range r > r0, with
r0 = 2M , the Schwarzschild radius. The surface r = r0 is the Schwarzschild horizon, at
which point the metric becomes degenerate, det g = 0.
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As we will see later, there’s no spherically symmetric static spacetimes with a mass
distribution outside of its horizon, so we can safely consider the exterior solution as the
spacetime outside of a spherical body.
Shell theorem
Surface gravity

Definition 75.2. The surface gravity κ of a static Killing horizon is the acceleration
needed to keep an object at the horizon.

∇KK = κK (75.4)

Normalization : |K| = −1 on the asymptotic boundary.

75.4 The interior solution

There are two types of interior solution for the Schwarzschild metric : the vacuum interior
solution (corresponding to a Schwarzschild black hole), and the non-empty interior, cor-
responding to a spherical object. In this section we will consider the non-empty interior,
where the interior starts at r > rS.

75.4.1 Hydrostatic stars

Equation of state

75.5 Maximal extension

For the totally empty Schwarzdschild solution, the Schwarzschild coordinates do not give
us a complete covering of the manifold by its coordinate patches, as the metric signature
becomes degenerate at r = rS. This is not the sign of a singularity, as can be checked by
computing some scalars
To get the full spherically symmetric extension of the metric, we will have to switch
to another coordinate system. It can be constructed by a few subsequence change in
coordinates.
First we will switch to Tortoise coordinates

r∗ = r + 2M ln | r
2M
− 1| (75.5)

They are so called in reference to Zeno’s paradox [1], because as can be checked, the
coordinate r∗ never reaches the horizon.

lim
r→2M

r∗ = −∞ (75.6)

Tortoise coordinates have the single non-trivial Jacobian element

∂r∗

∂r
= (1− 2M

r
)−1 (75.7)

making the metric

ds2 = (75.8)
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Eddington-Finkelstein coordinates :
ingoing : v = t+ r∗ outgoing : u = t− r∗

ds2 = −(1− 2M

r
)dudv + r2dΩ2 (75.9)

ds2 = −2Me−
r

2M

r
e
v−u
4M dudv + r2dΩ2 (75.10)

Kruskal-Szekeres coordinates

U = −e−
u

4M

V = e
v

4M (75.11)

ds2 = −32M2e−
r

2M

r
dUdV + r2dΩ2 (75.12)

The topology of the maximally extended Schwarzschild spacetime
If we suppress the angular coordinates, the Kruskal coordinates are conformally equivalent
to Minkowski space, meaning that we can deduce its Penrose conformal diagram easily
enough by embedding it into Minkowski space.

i+

i−

i0

i+

i−

i0

I +I +

I −I − IV

II

III I

r = 0

r = 0

r =
2M

r =
2M

r =
2M

r =
2M

Figure 14: Conformal diagram of the Schwarzschild spacetime

Wormhole

75.6 Geodesics

−κ = gµνu
µuν = −(1− 2M

r
)ṫ2 + (1− 2M

r
)−1ṙ2 + r2ϕ̇2 (75.13)

1

2
ṙ2 +

1

2
(1− 2M

r
)(
L2

r2
+ κ) =

1

2
E2 (75.14)
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Timelike radial geodesics :

x (75.15)

Orbits of test particles
For massive and massless particles
Photon sphere

75.7 Causality

Despite its singularities, the Schwarzschild spacetime is globally hyperbolic.
Find the Cauchy surface in Kruskal coordinates, find the null geodesics
Horizons, trapped surfaces, singularities

75.8 Black hole thermodynamics

Laws of black hole thermodynamics : analogy between surface gravity/temperature, sur-
face area/entropy

Theorem 75.3. The horizon has constant surface gravity for a stationary black hole.

Theorem 75.4. For a perturbative change of a stationary black hole, the change in
energy is related to the change of area, angular momentum and electric charge.

dE =
κ

8π
dA+ ΩdJ + ΦdQ (75.16)

Theorem 75.5. If the weak energy condition holds, the area of the event horizon is
increasing.

dA

dt
≥ 0 (75.17)

Theorem 75.6. There are no black hole with vanishing surface gravity κ.

Analogy :

TH =
κ

2π
(75.18)

SBH =
A

4
(75.19)

Issue with black hole entropy and violation, segue into Hawking radiation

75.9 Hawking radiation

Scalar field on Schwarzschild :

(�+m2)ϕ+ ξR = (
1√
−g

∂µ(
√
−ggµν∂ν) +m2)ϕ+ ξR (75.20)
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75.10 Variations on the Schwarzschild spacetime

75.10.1 The negative mass Schwarzschild metric

The negative mass Schwarzschild, like its name indicates, is just a variation on the
Schwarzschild metric with a negative mass.

ds2 = (1− 2M

r
)dt2 − (1− 2M

r
)−1dr2 − r2(dθ2 + sin2(θ)dφ2) (75.21)

75.10.2 The Vaidya metric

The Vaidya metric is a simple modification of the Schwarzschild metric to make it into a
non-vacuum solution
outgoing Vaidya metric :

ds2 = −(1− 2M(u)

r
)du2 + 2dudr + r2(dθ2 + sin2(θ)dφ2) (75.22)

ingoing Vaidya metric :

ds2 = −(1− 2M(v)

r
)dv2 + 2dvdr + r2(dθ2 + sin2(θ)dφ2) (75.23)
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76 Reissner–Nordström metric

Vacuum solution of the spherically symmetric Einstein-Maxwell equation

ds2 = (1− 2M

r
+
µQ2

4πr2
)dt2 − (1− 2M

r
+
µQ2

4πr2
)−1dr2 − r2dΩ2 (76.1)

Theorem 76.1. That thing about massless neutrino fields

76.1 Causality

extremal or not
Penrose diagram
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77 Kerr and associated spacetimes

Unlike for the Schwarzschild solution, which can describe entirely every vacuum spher-
ically symmetric spacetime by a single class of solutions parametrized by the mass M ,
the solutions for vacuum axisymmetric spacetimes cannot be so easily classified, even
assuming stationarity.

77.1 Static axisymmetric vacuum spacetimes

As we’ve seen previously, a general form for a static axisymmetric spacetime is

77.2 Tomimatsu metrics and Perjes metrics

77.3 Kerr-Newman metric

ds2 = (77.1)

77.4 Causality

Spacelike singularities, closed timelike curves, naked singularities, naked CTCs
Instability of the Cauchy horizon

77.5 Stellar black holes

Theorem on collapse and stable solutions

77.6 Hawking radiation

Loss of angular momentum by emission
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78 Wave solutions

g = gR(x) + 2dudv +H(x, u)du2 (78.1)

Gravitational wave solutions
EM wave solutions
pp-wave spacetimes
wave collision
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79 The Gödel spacetime

Dust solution, homogeneous, axisymmetric
Topology : R4

ds2 =
1

2ω2
[−(dt+ exdz)2 + dx2 + dy2 +

1

2
e2xdz2] (79.1)

This corresponds to the frame field

e0 =
√

2ω∂t

e1 =
√

2ω∂x

e2 =
√

2ω∂y

e3 = 2ω(exp(−x)∂z − ∂t)

Einstein tensor :

Gab = ω2ηab + 2ω2∂t ⊗ ∂t (79.2)

79.1 Symmetries

Killing vectors : ∂t, ∂y, ∂z, ∂x − z∂z, −2 exp(−x)∂t + z∂x + (exp(−2x)− z2/2)∂z

79.2 Causality

Closed timelike curves through every point (no geodesics)
Lack of spacelike hypersurfaces
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80 Wormholes

Wormholes are not perfectly well defined, but they can roughly be defined by the process
of removing an open n-ball from two spacelike hypersurface either of the same spacetime
or two different spacetimes, and identifying the boundaries together (in other words a
connected sum). The region around the boundary is referred to as the throat of the
wormhole, and it should be small in some sense compared to the original manifolds
(otherwise Minkowski space could qualify). If the two spacetimes are different, it is
sometimes referred to as an inter-universe wormhole, while if it is the same, an intra-
universe wormhole.

80.1 The Morris-Thorne wormhole

Morris-Thorne wormholes are a class of simple spherically symmetric traversible worm-
holes. The first instance of them was in the form of the Ellis and Bronnikov drain hole.

For its wormhole structure, the Morris-Thorne wormhole is simply two copies of Rn−1

with the boundary of a ball identified. As such, its Cauchy surface has the topology

Rn−1#Rn−1 ≈ Rn−1 \ {p} ≈ R× Sn−1 (80.1)

with the full spacetime manifold with the topology R2 × Sn−1, equipped with the coor-
dinates (t, l, θi). Its metric is of the form

ds2 = −e2Φ(t,l)dt2 + dl2 + r2(t, l)dΩ2 (80.2)

throat radius :

r0 = min
l∈R

(r(l)) (80.3)

with the appropriate choice of α and r, we would get the Schwarzschild black hole, which
has indeed a wormhole structure, but suffers from having an event horizon. To restrict
it to the traversible case, we also require that φ(l) be everywhere finite.

In fact, we can recast the metric in a form even more suggestive of the Schwarzschild
metric, which will be of some use for calculations.

ds2 = −e2Φ±(t,r)dt2 + (1− b±(r)/r)−1dr2 + r2(t, l)dΩ2 (80.4)

If we restrict our analysis to the static case

ds2 = −e2Φ(l)dt2 + dl2 + r2(l)[dθ2 + sin2(θ)dϕ2] (80.5)

Christoffel symbols :

Riemann tensor :

Ricci scalar :

Stress energy tensor associated

Violation of the weak energy condition

Mass of the wormhole

charge
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80.1.1 The Ellis-Bronnikov wormhole

The Ellis-Bronnikov wormhole is the simplest form of the Morris-Thorne wormhole, with
the : r(l) =

√
l2 + a2, a the diameter of the throat

ds2 = −dt2 + dl2 + (l2 + a2)[dθ2 + sin2(θ)dϕ2] (80.6)

WEC, minimization, etc
No go theorem on scalar fields

80.2 Expanding wormholes

the de Sitter wormhole

ds2 = −e2Φ(r)dt2 + e2χt[(1− b(r)

r
)−1dr2 + r2dΩ] (80.7)

80.3 Intra-universe wormholes

The intra-universe wormhole is the basic notion of a wormhole as the addition of a handle
to a hypersurface. If we consider a foliated spacetime with topology R×Σ, the addition
of an intra-universe wormhole will have the topology R× (Σ#Sn−1).
As this process is the connected sum of a torus, and that a 1-dimensional torus will be
the circle S, an identity of the connected sum, we will not have any wormholes in (1 + 1)
dimensions directly.

80.3.1 Torus universe

The simplest intrauniverse wormhole is just be the addition of a handle to R×S2, which
will simply be R × T 2. While a flat torus might be a bit of a stretch as a wormhole, it
will always be possible to apply a Weyl transform to it to make the inside distance much
shorter than the outside. For instance, if we define the outside of the wormhole as the
region θ ∈ [π, 2π] and the inside as θ ∈ [0, π], all we need is to define the metric

g = Ωη (80.8)

with Ω rapidly diminishing between ±π and 0.
Method to construct a time machine from it

80.3.2 Asymptotically flat wormhole

A more ”realistic” wormhole spacetime is the space with a handle, R× (Rn−1#T n−1). As
in general, the connected sum of a manifold with Rn is equivalent to that manifold with
a disk removed, this
Wormhole that is Rn#T n : plane with a handle, aka punctured torus T n \Dn

The fundamental group of the punctured n-torus is the free group of n generators

Definition 80.1. The free group Fn is the group constructed from the generators {a1, ..., an},
each of which has an associated inverse a−1

k , such that every sequence of the generators
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Figure 15: Cayle graph of F2

Figure 16: Fundamental polygon of the punctured torus

and their inverse give rise to a unique element of the group, unless dictated by the group
structure.

For instance, the free group F2 is defined by the generators {a, b}, with inverses a−1, b−1.
The first few group elements are of the form

F2 = { 1, a, , b, a−1, b−1, ab, ba, a−1b−1,

b−1a−1, a−1b, ba−1, ab−1, b−1a, ...}

Only elements of the type a−1a, ab−1bb, aa−1a, etc, are written non-uniquely, correspond-
ing to 1, ab and a respectively.
Cayle graph of F2 :
Universal cover : the disk, can be hyperbolic space or plane
For the covering map H2 → T 2 \ D2, need to find a Fuchsian group Γ ≈ F2 so that
H2/Γ ≈ T 2 \D2

Construction of the covering map via the Cayle complex method
Embedding of the polygon in the Poincaré disk or Poincaré half plane
Poincaré disk : D = {z ∈ C||z| < 1}
Geodesics : Arcs of circles and diameters that meets ∂D orthogonally
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Map from H to D :

h(z) =
z − i
iz − 1

(80.9)

Inverse :

h−1(z) =
−z + i

−iz + 1
(80.10)

ds2 = 4
dx2

1 + dx2
2

1− x2
1 − x2

2

(80.11)

ds2 = 4
dz + dz̄

(Im(z))2
(80.12)

Symmetry group of H2 : SL(2,R)
Möbius transformation on D :

αz + β

β̄z + ā
, α, β ∈ C, |α|2 − |β|2 > 0 (80.13)

Fuchsian groups : discrete subgroups of PSL(2,R)
Basic wormholes constructed from the punctured torus :
Consider the punctured torus constructed from the Clifford torus (ϕ, θ), ϕ, θ ∈ [0, 2π].
The Clifford torus just has the flat metric

ds2 = dθ + dϕ (80.14)

We remove from it the closed set A = {(ϕ, θ)|ϕ, θ ∈ [0, π]}.
To make it into an asymptotically flat manifold, we apply a Weyl transformation to send
the edges of the removed set to infinity

lim
x→∂A

Ω(x) = 1 (80.15)

d(x, ∂A) =∞ (80.16)

The simplest spacetime for this hypersurface is then just the static wormhole spacetime

ds2 = −dt2 + Ω(ω, ϕ)(dθ + dϕ) (80.17)

check for horizons

80.3.3 Cut and paste thin-shell wormholes

The simplest method to get wormholes with tractable solutions is the use of the thin-shell
formalism after cutting and pasting some elements from the manifold.

Definition 80.2. A thin-shell Minkowski wormhole with mouth topology S is composed
by cutting two open sets S1, S2 ⊂M, S1 ∩ S2 = ∅, where S1 and S2 intersect every such
that there exists two homeomorphisms

fi : S → Si, i = 1, 2 (80.18)

and such that the boundaries ∂S1 and ∂S2 are identified using the homeomorphism f−1
1 ◦

f2 : S1 → S2
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As the metric is homogeneous for Minkowski space, it’s not hard to show that the metric
on ∂S1 is the same as the one on ∂S2, hence the metric defined by the gluing will be at
least C0.

Definition 80.3. The acceleration of the mouth is defined by a sequence of timelike
curves {γn} such that for every spacelike hypersurface, γn(τ) converges to

CTCs : Induce a time difference between the two mouthes (identify the spheres at different
moments in time)

Proposition 80.4. If a cut and paste wormhole in Minkowski space has the boundaries
identified such that ∂A1(t) is identified with ∂A2(f(t)), with f(0) = 0, the function f
depends on the acceleration of ∂A2.

Proof. If we pick a point p ∈ ∂S
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81 Faster-than-light spacetimes

81.1 Defining faster-than-light spacetimes

A faster than light (or FTL) spacetime, also called a spacetime shortcut or hyperfast
spacetime is a spacetime for which the travelling time between two points can be shorter
than the travelling time of light in normal circumstances.
The exact definition of a faster than light (or FTL) metric is a bit difficult, as it is
more of an engineering notion than a properly physical one. One definition might be a
metric where, given two points x1 and x2 on a spacelike hypersurface with a distance d
in between them, at a future time
The basic idea behind FTL metrics is the widening of light cones along the trip’s tra-
jectory, to have the possibility of travelling along trajectories that would be considered
spacelike without those modifications.
There are several definitions available for
The notion behind a rigorous definition of a spacetime allowing FTL travel is to define
it with respect to another, more ”reasonable” spacetime.
Let M1 and M2 be two spacetimes, which each contain a pair of inextendible timelike
curves Ei, Di. Define points S1 ∈ E1, S2 ∈ E∈. We then define the points

Fi = ∂J+(Si) ∩ Di (81.1)

Ri = ∂J+(Fi) ∩ Ei (81.2)

Fi corresponds to the earliest point something leaving Ei could reach Di, whihe Ri is the
earliest point something could make the trip back.

81.2 The Alcubierre warp drive metric

The Alcubierre drive was the first attempt at a FTL metric. It was inspired by the faster
than light cosmological expansion, where the distance between two stars at rest might
increase in such a way that they appear to move at speeds greater than the speed of light.
The metric is constructed by a widening of the light cone within a compact region, that
itself moves

ds2 = −dt2 + (dx− vsf(rs)dt)
2 + dy2 + dz2 (81.3)

xs(t) some arbitrary function of spacetime

vs(t) =
dxs(t)

dt
, rs(t) =

√
(x− xs(t))2 + y2 + z2 (81.4)

f(rs) =
tanh(σ(rs +R))− tanh(σ(rs −R))

2 tanh(σR)
(81.5)

For a constant warp bubble velocity vs(t) = v0, consider the coordinate change

r = x− v0t (81.6)

In the new coordinates, the metric becomes
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ds2 = −A(r)(dt− v0(1− f(r))

A(r)
)2 + dy2 + dz2 (81.7)

Then proper time τ = t− v0(1−f(r))
A(r)

r

ds2 = −A(r)dτ 2 +
dr2

A(r)
+ dy2 + dz2 (81.8)

Static metric in R4 : causal
Why the FTL part : inside the bubble, for ds2 = 0 in the tx plane, t2 = (x − vt)2,
t = ±x− vt
Also for v > 1 : horizon on the bubble
Modified version that violates causality :
Consider the Lorentz transform

t′ = γ(t− βx)

x′ = γ(x− βt)
y′ = y

z′ = z

t = γ(t′ + βx′)

x = γ(x′ + βt′)

y = y′

z = z′

gxx = γ2(1− β2(1− v2f 2(rs))− 4βvf(rs))

gtt = −γ2(1− v2f 2(rs) + 4βvf(rs)− β2)

gxt = γ2(βv2f 2(rs) + (1 + β2)2vf(rs))

ds2 = −(1 + γ2f(rs)(4βv − v2f(rs)))dt
2

+ (1 + γ2βvf(rs)(βvf(rs)− 4))dx2

+ vf(rs)(γ
2βvf(rs) + 2)dxdt

+ dy2 + dz2

Outside the bubble, the metric reduces to Minkowski space, while inside the bubble, it
reduces to

ds2 = −(1 + 4βv − v2)dt2 + (1 + γ2βv(βv − 4))dx2

+ vf(γ2βv + 2)dxdt+ dy2 + dz2
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81.3 The Krasnikov tunnel

The Alcubierre warp drive metric, beyond its physical problems with respect to horizons
and energy conditions, also suffers from engineering issues due to the causal isolation of
the inside of the bubble.
2D version :

ds2 = −(dt− dx)(dt+ k(x, t)dx) (81.9)

= −dt2 + (1− k(x, t))dxdt+ k(x, t)dx2 (81.10)

k(x, t) = 1− (2− δ)θε(t− x)[θε(x)− θε(x+ ε−D)] (81.11)

θε is a mollified version of the Heaviside function, a smooth function satisfying

θε(x) =

{
1 x > ε

0 x < 0
(81.12)

4D version :

ds2 = −dt2 + (1− k(x, t, ρ))dxdt+ k(x, t, ρ)dx2 + dρ2 + ρ2dφ2 (81.13)

k(x, t) = 1− (2− δ)θε(ρmax − ρ)θε(t− x− ρ)[θε(x)− θε(x+ ε−D)] (81.14)

CTCs : At least 3+1D, to have two non-intersecting tubes
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82 Causality violating and time machine solutions

While many spacetimes violate the chronology condition, a time machine refers specifi-
cally to a spacetime that could be conceivably constructed.

Definition 82.1. A time machine is a spacetime with a chronology violating region
stemming from a compactly generated Cauchy horizon.

This excludes spacetimes with no Cauchy horizons such as the Gödel spacetime or the
Tipler cylinder, and non-compactly generated Cauchy horizons. This is on the assumption
that our own universe doesn’t include by itself closed causal curves and that we can only
influence matter in a compact region of spacetime.
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Part IX

The real world
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83 Experimental tests of general relativity

Since this section will involve physical measurements, we will put back in every SI constant
in the equations, with the measured values of

c = 299 792 458 m s−1

κ = 2.076 579× 10−43 s2 m−1 kg−1

G = 6.674 08(31)× 10−11 s−2 m3 kg−1

~ = 1.054 571 800(13)× 10−34 J s

M⊕ = 5.9724(3)× 10−24 kg

R⊕ = 6.3781× 10−6 m

83.1 Measurements in general relativity

To perform experiments on general relativity, we first have to define what measurable
quantities are involved and how we can measure them. The two basic quantities we will
be interested in are proper times and lengths, which we will measure using clocks and
measuring rods.

83.1.1 Clocks

A clock in general relativity will be any process which, approximated as happening along
a single timelike curve γ(τ) of unit speed, has recurring events such that if this event
occurs at some τp, then it will only occur at τp + kT , for some T ∈ R>0, k ∈ Z. As the
proper time along a geodesic of unit speed is just τ2 − τ1, the proper time between any
two events will be kT , and the proper time between two consecutive events will be T , the
period of the clock.
We can then define a parametrization of the curve

τ 7→ (τ − τp)/T (83.1)

In this parametrization, every event will occur at τ = k. This is the time as measured
by the clock.
An important clock is the one defined by the maximal amplitude of the radiation emitted
by the transition between the two hyperfine levels of the ground state of caesium 133, at
rest and at a temperature of 0K. For this, we define additionally the parametrization

τ 7→ t = (τ − τp)/(9 192 631 770 T ) (83.2)

for which we go from t to t + 1 after 9 192 631 770 consecutive events. We then say that
in this parametrization, the time elapsed between two events γ(t1) and γ(t2) is t2 − t1
seconds.
If we have to use two different clocks, we can calibrate them to measure approximately
the same time. If we have two clocks of period T1 and T2 starting at λp, and we find
that the last tick N2 of the second clock occurs between the ticks N1 and N1 + 1 of
the first clock, we then know that the relation between the two periods will be between
N1T1 = N2T2 and (N1 + 1)T1 = N2T2, or
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T2 ∈ [T1
N1

N2

, T1
N1 + 1

N2

] (83.3)

which we can write as the uncertainty

T2 = T1(
N1

N2

+
1

2N2

)± T1
1

2N2

(83.4)

The uncertainty becoming negligible for N2T2 � T1.
We can then parametrize, up to uncertainty, any timelike curve with the parametrization
of that new clock. This will allow us to measure any time interval using SI units.
If the spacetime is globally hyperbolic, we can define the temporal function from a fo-
liation such that ∇t = n has timelike curves as a flow with this parametrization for
hypothetical clocks going through each points. This will be the global SI parametrization
of time for this spacetime. If the spacetime isn’t globally hyperbolic, we can simply pick
a globally hyperbolic neighourhood of the region of interest.
Light clocks

83.1.2 Measuring rod

Measuring rod : two timelike curves such that their intersection in an achronal spacelike
hypersurface is of constant separation.
Meter : a measuring rod is of 1 m if a light rays leave point A at λA and reaches point B
at λB such that, in the SI parametrization,

(λB − λA) =
1

299 792 458
s (83.5)

or for a round trip AB, BA, the time measured along A is twice that.
Observer carries a clock and measuring rods

83.2 Special relativity

For the effects of special relativity, we will take as the manifold Minkowski space

83.2.1 Time dilation

Proposition 83.1. If we have in our coordinate system one observer A at rest and
another observer B in motion at a constant speed ~v, each carrying a clock, then on the
same Cauchy surface, the proper time τA measured by A will be related to τB measured
by B by

τA =
1
√
...
τB (83.6)

Proof.

Proposition 83.2. A measuring rod of length LA in its own rest frame will be of length

LB =
√
...LA (83.7)

as measured by the measuring rod of an observer B in a motion of constant velocity.
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The experimental measurement of those effects can be observed in the twin paradox

Proposition 83.3. For an observer A at rest on a timelike curve γA in the coordinate
system, and an observer B following a timelike curve such that there exists two points
of intersection between γA and γB, then the proper time measured by B will be shorter
than the proper time measured by A.

Twin paradox on a cylinder

83.2.2 The relativistic Doppler effect

If we consider a wave source on Minkowski space with two observers, one at rest with
respect to the source, another with a velocity of ~v with respect to it, if the first observer
measures a frequency of ω

83.3 Newtonian approximation

As we saw with the Pauli-Fierz theory, it is possible to express general relativity as a
field theory. In the limit of small perturbations and small derivatives around Minkowski
space, the Einstein field equations become

�h̄µν = Tµν (83.8)

Assumption of the Newtonian approximation : the spacetime is quasi-stationary :

hµν(t, x) ≈ hµν(x) (83.9)

The speeds are very low, so that the only large component of the stress energy tensor is
Ttt.

�h̄tt(x) = ∆h̄tt = Ttt(x) (83.10)

If we put back everything in SI units, this gives us

∆h̄tt =
8πG

c2
Ttt(x) (83.11)

This is the Newtonian Gauss law, with the notation h̄tt = 2Φ + const., Ttt/c
2 = ρ the

mass density.

∆Φ = 4πGρ(x) (83.12)

[CHECK WHERE THE SIGN WENT]

This means that to some approximation, every Newtonian effect will correspond to a
general relativistic effect.
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83.3.1 Free fall

The simplest gravitational experiment one can perform is the free fall of a body in a
gravitational field. Since Earth is approximately spherical, and we can hopefully neglect
its rotation, this will correspond to the motion of a radial geodesic in a Schwarzschild
spacetime.

ṙ2 + (1− 2GM

c2

1

r
) = E2 (83.13)

If we expand around the radius of the earth, R⊕

1

r
=

1

R⊕

∞∑
n=0

=
1

R⊕
− r −R⊕

R2
�

+O(R3
⊕) (83.14)

Cutting off the last term,

ṙ2 +
2GM

c2R2
⊕
r = E2 − 1 +

4GM

c2R�
(83.15)

Differentiate by τ :

2r̈ṙ +
2GM

c2R2
⊕
ṙ = 0 (83.16)

r̈ +
GM

c2R2
⊕

= 0 (83.17)

This is indeed the classical equation of motion of a point mass in a uniform gravitational
field. If we further define the gravitational acceleration on earth’s surface as g = GM/R2

⊕,
we get the familiar form

r̈ = −g (83.18)

with the usual solution

r(τ) = −1

2
gτ 2 + v0τ + r0 (83.19)

which is the usual form of the Newtonian free fall.
Experiment : 60fps camera, drop of a ball, markers of distances
check local distance to Earth’s barycenter, mass of the ball independently of gravity
(spring pan)

83.3.2 The Cavendish experiment

Torsion balance for the attraction of two masses

83.3.3 Planetary orbits

Planetary orbits are one of the oldest method of testing gravitational laws, going all the
way back to Newtonian gravity when the idea emerged.
Two body problem in Newtonian gravity

314



Standard gravitational parameter :

µ = G(m1 +m2) (83.20)

Newton’s equation :

~a1(t) = Gm2
~r2 − ~r1

|~r2 − ~r1|3

~a2(t) = Gm2
~r1 − ~r2

|~r1 − ~r2|3
(83.21)

Kepler’s laws :

1. The orbit of a planet is an ellipse with the sun as one of its foci.

2. A line from the sun to the planet sweeps the same areas during the same time
interval.

3. for the orbital period T and the semi-major axis of the orbit a, we have the relation

T 2 ∝ a3

From the Schwarzschild timelike geodesics :

83.4 The equivalence principle

One of the fundamental principle behind general relativity, as well as most metric theories
of gravity, is the equivalence principle, which comes in two variety :
Weak equivalence principle : The trajectory of a test particle only subject to gravity will
only depend on its initial position and velocity.
Strong equivalence principle : The outcome of any local experiment in a freely falling
frame is independant of its position and velocity.

83.4.1 The Eötvös-Dicke experiment

objects of various materials dropped in a vacuum
Eötvös experiment :

83.5 Light deflection and gravitational lensing

83.5.1 Newtonian light deflection

While Newtonian gravity does not a priori affect any massless object, it is possible to
make sense of light deflection in a Newtonian context by either considering it as a metric
theory or by considering the massless limit of a deflection.
Deflection of a point particle of mass m :
Object coming from infinity with velocity v, hyperbolic orbit of the two body problem
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83.5.2 Relativistic light deflection

Geodesic equation of a null curve around Schwarzschild metric

Eddington’s measurement during the 1919 eclipse

Einstein cross

83.6 Redshifting in gravitational fields

83.6.1 The Pound-Rebka-Snider redshift experiment

Experiment to check the redshifting of some photons travelling up or down a gravitational
potential.

Consider an EM wave/null particle travelling radially on a Schwarzschild metric

Blueshifting of the photon :

fr = (
1− 2GM

(R+h)c2

1− 2GM
Rc2

)
1
2fe (83.22)

Emitter placed at the top of the tower, receiver at the bottom.

22.55 m

Source of excited Fe57

Target of Fe57

Figure 17: The Pound-Rebka experimental setup

Mossbauer effect with iron 57 : Nucleus in a lattice emits or absorbs gamma rays without
significant loss of energy to nuclear recoil. The emitted gamma ray can be reabsorbed by
another nucleus at rest with respect to the first one due to the very small difference.

Emitter : a source of 0.4 Cu Co57, decaying to Fe57 in an excited state

Emission : 14.4 keV by iron 57 atoms

Distance between source and receiver : 22.55 m
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83.6.2 Space MASER experiment

83.7 Time dilatation in gravitational fields

83.8 Frame dragging and the geodetic effect

Gyroscope (modelled by a spinning test particle) in orbit around a Kerr metric
Gravity Probe B
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84 Astrophysics

84.1 Gravitational waves

84.1.1 Orbit decay of binary systems

Two-body problem in linearized gravity up to some order
Binary systems : loss of energy via gravitational radiation induces a decrease in the
distance between the two stars

84.1.2 Direct detection by interferometry

Gravitational waves can also be detected directly by their effect on geodesics when passing
through.
LIGO detection : interferometer perturbed by the passage of a gravitational wave
1064 nm neodymium-doped yttrium aluminium garnet laser beam of 20 W

84.2 Black holes

Observational evidence of black hole
Future probe for photon sphere observation
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85 Cosmology

85.1 The Copernician principle

Copernician principle : the universe is at great scale homogeneous and isotropic at every
point.

Matter distribution

Critical density

85.2 The cosmological expansion

Cosmological redshift : far enough objects are redshifted as if receeding at a speed that
depends on their distance, including > c

comoving distance in the FRW metric

85.2.1 The cosmological distance ladder

To check the effect of the cosmological expansion, we first need some notion of the measure
of distances for astronomical bodies.

Different methods for different objects and distances are available.

• Parallax

• Standard candles

• Cepheid variable stars

85.2.1.1 Parallax measure

Parallax measure is the oldest method available for the measuring of distances, going
back to 189 BCE with Hipparcus’ measurement of the distance of the moon.

Aristarchus measurement of the distance of the sun

First successful measurement : Friedrich Bessel in 1838 for the star 61 Cygni.

•

•

S
B

A

ϕA

ϕB

θ

Figure 18: Measurement of distances using the parallax
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If we assume the space sufficiently flat in between the points A, B and the star S, we can
use to a good approximation Euclidian geometry. If we consider the spherical coordinates
formed by the center of the point of origin that we consider, with the coordinates

A = (ϕA, θA, rA)

B = (ϕB, θB, rB) (85.1)

S = (ϕR, θS, rS)

Distance A to S, B to S, distance A to B known
Simplest case : rA = rB = R, θ = π/2, ϕA = 0, ϕB = π

x (85.2)

85.2.1.2 Standard candles

As stars follow for the most part the same model, we usually have a good enough idea of
their mass and luminosity simply from their composition (spectral rays).
If we can consider the curvature small enough, from the van Vleck determinant, we know
that the light intensity of a source decays roughly as

I(r) ∝ r−2 (85.3)

Square decay
Distance modulus

m−M = 5 log10(d)− 5 (85.4)

M absolute magnitude, m apparent magnitude
[Some Hertzsprung russell diagram]
Cepheid variable stars
Stars that pulsate at a regular interval
Period of pulsation proportional to the luminosity

85.3 The cosmic microwave background

Cosmic microwave background
removal of redshifting from motions wrt the CMB
Roughly isotropic as seen from earth
PLANCK

85.4 Topology of the universe

Topology of the universe : Largest fundamental domain
Physical appearance of a wormhole, divergence of rays
Repeated patterns of the CMB outside the fundamental domain
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86 Post-Newtonian parametrization

Description of most gravitational theories in terms of a handful of parameters.
Compare those parameters with experiment.
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87 Tests of quantum gravity

87.1 Tests of semiclassical gravity

Cavendish experiment with radioactive source

87.2 Tests of the Schrödinger-Newton equation

Due to the very small potential induced on individual particles, gravitation acts rather
weakly in quantum mechanics. To palliate this, experiments usually involve particles
with
Ultra cold neutron experiment

87.3 Tests for Lorentz violations

Lorentz invariance at very small scale
Experiment on quantum foam and light diffraction
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88 History

88.1 Classical theories of gravitation

88.1.1 Antiquity

The study of gravity dates all the way back to the very beginning of physics, with Aris-
totelian physics [1]

Natural place of every elements in the world, every element attracted to its own domain,

”Aristotle’s Physics: a Physicist’s Look” :

v ∝ W

ρ
(88.1)

v the speed of the object, W the weight of the object, ρ the density of the medium

Space as absolute vs. relative

88.1.2 Classical mechanics and Newtonian gravity

Galilean relativity

Motion of falling bodies, mass on an incline

Newtonian gravity

~F = G
m1m2

r2
(88.2)

Gauss equation :

∆Φ = 4πGρ(x) (88.3)

Fluid theories of gravity

LeSage theory : particles moving throughout the universe apply uniform pressure. For
two bodies : inelastic collisions change the pressure between the two bodies

Mach principle : inertial frames determined by mass distribution in the universe

88.2 Non-euclidian geometry

The assumption of Euclidian geometry

Kant epistemology

Non-Euclidian geometry : Gauss, Lobachevski, Riemann, Beltrami

That 1870’s idea of having curved space for forces

88.2.1 Non-euclidian cosmologies

Cosmology has always had problems in the days of classical mechanics

Instability of Newtonian cosmology

Olbers paradox Statement : In an approximatively homogeneous distribution of stars in
a euclidian, static, infinitely old universe, the sky would be infinitely bright
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Theorem 88.1. If the universe has the flat spatial topology R3, with a star density
corresponding to a Poisson distribution with density ρ of N stars in the region D

P (N(D) = k) =
(ρV (D))ke−ρV (D)

k!
(88.4)

the total light flux at any point is infinite.

Proof. Let’s consider stars of identical spectrum (this is true for any non-zero spectrum
so we can just take the lowest possible one). If the star distribution is uniform, with some
density of n stars per unit volume V , then for any point p, the average number of stars
at a distance R will be

N̄(BR) =
4

3
πR3ρ (88.5)

Each star at distance r has the intensity I = I0/r
2, giving the average intensity

Ī(BR) =

∫ R

0

I0
(ρV (D))ke−ρV (D)

k!r2
dV (88.6)

Non-euclidian cosmologies : Zöllner
Solution of Olber’s paradox by Zöllner : universe of constant positive curvature

88.3 Birth of general relativity

88.3.1 The necessity for relativity

A variety of anomalous effects existed by the early 20th century that would be later on
explained by special and then general relativity.
One of the earliest of those effects was the anomalous precession of the perihelion of
Mercury. The best computations of Urbain Le Verrier, by the analysis of the transit of
Mercury from 1697 to 1848, showed that the value was of about 5600′′ per century, while
the computed value

88.3.2 Special relativity

The Maxwell equations for electromagnetism
Total current (p, q, r), conduction current (p′, q′, r′), magnetic potential (F,G,H), magne-
tizing field (α, β, γ), electric field (P,Q,R), displacement field (f, g, h), electric potential
Ψ

p′ = p+
df

dt

q′ = q +
dg

dt

r′ = r +
dh

dt
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µα =
dH

dy
− dG

dz
(88.7)

µβ =
dF

dz
− dH

dx

µγ =
dG

dx
− dF

dy

Galilean invariance : measurable quantities should be invariant under the transformation
x→ x+ vt, v ∈ R3

Break of Galilean relativity in electromagnetism due to the magnetic term
This meant that either the principle of Galilean invariance was wrong or that the laws of
electromagnetism were only valid in a specific frame, the later being the theory that was
adopted at the time, as it was supposed that electromagnetism was the consequence of
the mechanical deformation of a fluid, the aether, in a similar manner to sound waves.
If true, this would mean that the speed of light will vary in frames in motion with respect
to the aether.

88.3.2.1 The Michelson-Morley experiment

To try to measure the absolute motion of earth through the aether, Albert Abraham
Michelson proposd an experiment in 1881 [cf The Relative Motion of the Earth and the
Luminiferous Ether]
Consider the speed of light c, speed of earth with respect to the aether v, take two points
A and B separated by a distance D. During the time t1 it takes for light to travel from
A to B, Earth moves a distance d1, while during the time t2 it takes to travel from B
to A, the earth will move a distance d2. Were the Earth at rest in the aether, we would
simply have t1 = t2 = t = D/c, but as the earth will move by d1 during the first trip, the
point B will move the same distance, hence the true distance travelled by light will be
D + d1, and similarly on the other way, D − d2.

t1 =
D + d1

c
=
d1

v

t2 =
D − d2

c
=
d2

v
(88.8)

d1 = D
v

c− v
d2 = D

v

c+ v
(88.9)

t1 =
D

c− v

t2 =
D

c+ v
(88.10)

From this, we get
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t1 − t2 = 2D
c

c2 − v2
= 2t

1

1− v2

c2

(88.11)

Michelson and Edward Morley performed this experiment (later called the Michelson-
Morley experiment) [cf ”On the Relative Motion of the Earth and the Luminiferous
Ether”, 1887] between april and july 1887.
Interferometer to measure the speed of light in two directions
Experimental setup :
To account for the constancy of the speed of light in apparently all inertial frames,
the effect of Lorentz contraction was formulated by Hendryke Lorentz, in the general
framework called the Lorentz ether theory.
Poincaré
Einstein’s theory of special relativity (≈ 1905)

88.3.3 Gravity in special relativity

The translation of classical theories to special relativistic theories is usually fairly straight-
forward.
Problem with the equivalence principle
attempts to have theories of gravity with it
Scalar gravity : Einstein, Nordstrom
Vector gravity
Tensor gravity : Pauli-Fierz

88.3.4 General relativity

1908 : ”On the relativity principle and the conclusions drawn from it” (acceleration in
SR) 1909 : Ehrenfest : ”Uniform rotation of rigid bodies and the theory of relativity”
1911 : ”On the influence of gravity on the propagation of light” 1913 : ”Outline of a
generalized theory of relativity and of a theory of gravitation” General relativity

88.4 Early years

88.4.1 Schwartzschild metric

Schwarzschild solution : 1916 ”On the gravitational field of point masses in Einstein’s
theory”

88.4.2 Gravitational radiations

controversies with general covariance, gravitational radiations, bead argument, Eddington

88.4.3 Cosmology

Lemâıtre metric, Hubble observation of redshift, Einstein universe, de Sitter universe,
Misner universe
Big bang cosmology, soviet union
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88.4.4 Early quantum gravity

Gupta’s flat space quantization

88.4.5 Causality

Weyl in space time matter
Reichenbach
Gödel

88.5 The golden years of general relativity

60’s and topology, singularity theorem, Hawking radiation

88.5.1 The singularity theorem

88.6 The current era

FERMI
Gravity probe B
PLANCK
LIGO
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A Topology

Basic notions and theorems of topology, for more details cf Munkres [21].
Basic definition of a topology :

Definition A.1. A topology τ on a set A is a set of subsets of A that obeys the following
properties :

• Both the empty set ∅ and the set A itself are in τ .

• For any collection Xα of members of τ ,
⋃
αXα ∈ τ .

• For any two members X, Y ∈ τ , X ∩ Y ∈ τ .

A subset C ⊂ X is closed if X \ C is open.
Corrolary : X, ∅ are both closed and open.
Cover
Basis
Compact set

A.1 Separation axioms

Definition A.2. A topological space (A, τ) is Hausdorff if for every p, q ∈ A, there exists
neighbourhoods Up, Uq ∈ τ such that Up ∩ Uq = ∅.

Definition A.3. A topological space X is second countable if there’s a countable col-
lection of open subsets {Ui} such that any open set in X is the union of some subset of
{Ui}.

Definition A.4. A manifold is paracompact if every open cover {Uα} has a refinement
{Vβ|∃α, Vβ ⊆ Uα} that is locally finite, that is, such that every point of the manifold only
intersects finitely many sets of that refinement.

A.2 Functions between topological spaces

Definition A.5. A function f : X → Y between two topological spaces X and Y is
continuous if for every open set O ⊂ Y , f−1(O) is an open set of X.

Proposition A.6. For a continuous function f : X → Y , with O ⊂ Y and U ⊂ X,

• The pre-image of a closed set is a closed set.

• The image of the closure of a set is a subset of the closure of the image : f(Ū) ⊂ f(U)

• for every x ∈ X and every neighbourhood O of f(x), there’s a neighbourhood U of
x such that f(U) ⊂ V

Proof.

Definition A.7. A homeomorphism is a continuous bijection with a continuous inverse.

Proposition A.8. For a homeomorphism
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• The image of an open set is an open set

• The image of a closed set is a closed set

• The image of the closure of a set is the closure of the image of that set.

Proof.

• Since f−1 is itself a continuous function, the preimage of some open set f(U) will
be an open set.

• Same proof.

•
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B Simplices

Definition B.1. A k-simplex is a k-dimensional polytope of k + 1 vertices.

Examples :

• 0-simplex : point (no vertices)

• 1-simplex : line (2 points as vertices)

• 2-simplex : triangle (3 lines as vertices)

• 3-simplex : tetrahedron (4 triangles as vertices)

simplex : list of points xi

C = {
n∑
i=0

θixi|
k∑
i=0

θi = 1, θi ≥ 0} (B.1)
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C Lie groups and Lie algebras

An important class of manifolds are Lie groups, which are manifolds equipped with some
group structure.

Definition C.1. A Lie group

Manifold with a group structure Associated with a Lie algebra : the tangent space at
p = 1, the identity of the group

T1G = g (C.1)

Group structure as Lie brackets

[·, ·] : g× g→ g (C.2)

Properties :
Bilinearity

[ax+ by, z] = a[x, z] + b[y, z]

[z, ax+ by] = a[z, x] + b[z, y]

Alternativity
[x, x] = 0 (C.3)

Jacobi identity
[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (C.4)

Anti-commutativity :
[x, y] = −[y, x] (C.5)

Lie group for every finite dimensional algebra
Exponential map

exp1(x) = exp(Tax
a) (C.6)

Examples :
Vector space V , U , O, SL, etc

Proposition C.2. The general linear group GL(n,R) is a Lie group.

Proof. The general linear group is a subset of the vector space of n× n matrices, which
is diffeomorphic to Rn2

, defined by

GL(n,R) = {M ∈ Matn×n |∃M−1, M−1M = MM−1 = 1} (C.7)
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D Functionals and functional derivatives

An important notion for physics in general and quantum theory is the notion of functionals
and their derivatives, which are functions with domain on some function space. More
precisely,

Definition D.1. A functional is a linear function on some vector space to a field (we
will only consider R), usually a vector space of functions.

F : V → R (D.1)

The most common example of a functional is some function involving the integral over a
domain, for instance

F [φ(x)] =

∫
D

Ψ(φ(x))dnx (D.2)

which is a functional from some function vector space (usually L2) to R. The measure
dnx will just be the usual Lebesgue measure on Rn, the volume form will be included
in the function Ψ, as we will also need functional derivatives with respect to the metric
components.

Ψ(φ(x)) = α(φ(x))
√
−g (D.3)

with α(φ(x)) some n-form.

D.1 The functional derivative

The functional derivative of a functional is a distribution defined by the Gâteaux deriva-
tive

δF [φ]

δφ
[f(x)]dx = lim

ε→0

F [φ+ εf ]− F [φ]

ε
(D.4)

with the limit defined in the topology of R. Most of the functionals considered will depend
both on φ and its first derivative dφ, so we will write it as F [φ, dφ], with its variation
F [φ+ εf, d(φ+ εf)].
To solve this in general, we will take the Taylor expansion of F [φ + εf, d(φ + εf)] as a
function of ε. If F is at least C1, we will get

F [φ+ εf, dφ+ εdf ] = F [φ, dφ] + ε(
d

dε
F [φ+ εf, dφ])|ε=0

+ ε(
d

dε
F [φ, dφ+ εdf ])|ε=0 +O(ε2) (D.5)

If F is defined as an integral :

d

dε
F [φ+ εf, dφ] =

d

dε

∫
D

Ψ(φ(x) + εf(x), dφ)dx

=

∫
D

∂Ψ

∂φ
(φ(x) + εf(x), dφ)f(x)dx
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d

dε
F [φ, ∂φ+ ε∂f ] =

d

dε

∫
D

Ψ(φ, ∂φ+ ε∂f)dx

=

∫
D

Ψ′(φ, ∂φ+ ε∂f)∂f(x)dx

If it also depends on the derivatives :

d

dε
F [φ+ εf, ∂(φ+ εf)] =

d

dε

∫
D

Ψ(φ(x) + εf(x), ∂x(φ(x) + εf(x))dx

=

∫
D

Ψ′(φ(x) + εf(x))f(x)dx

Derivative :

δF [φ]

δφ
[f(x)] = lim

ε→0

∫
Ψ′(φ(x) + εf(x))f(x)dx

=

∫
Ψ′(φ(x))f(x)dx (D.6)

δF [φ, ∂φ]

δφ
[f(x)] = lim

ε→0

∫
[Ψ′(φ(x) + εf(x), ∂φ)f(x) + Ψ′(φ, ∂φ+ ε∂f)∂f(x)]dx

=

∫
[Ψ′(φ(x), ∂φ)f(x) + Ψ′(φ, ∂φ)∂f(x)]dx (D.7)

By integration by part, we can put everything as a factor of f(x) up to a surface term.∫
Ψ′(φ, ∂φ)∂f(x)dx = [f(x)Ψ′(φ, ∂φ)]−

∫
f(x)∂xΨ

′(φ, ∂φ)dx (D.8)

δF [φ, ∂φ]

δφ
[f(x)] =

∫
D

[Ψ′(φ(x), ∂φ)− ∂xΨ′(φ, ∂φ)]f(x)dx+

∫
∂D

f(x)Ψ′(φ, ∂φ) (D.9)

If the surface integral drops to 0, then we have that

δF [φ, ∂φ]

δφ
[f(x)] =

∫
D

[
∂Ψ

∂φ
(φ, ∂φ)− ∂x

∂Ψ

∂(∂φ)
(φ, ∂φ)]f(x)dx (D.10)

which means that the functional derivative is itself a function if the derivatives of Ψ are.
We will note that function as

δF [φ, ∂φ]

δφ
(x) =

∂Ψ

∂φ
(φ, ∂φ)− ∂x

∂Ψ

∂(∂φ)
(φ, ∂φ) (D.11)

Properties :
Linear :

... (D.12)
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Proposition D.2. The functional derivative obeys the Leibniz property

δFG[φ]

δφ
=
δF [φ]

δφ
G[φ] + F [φ]

δG[φ]

δφ
(D.13)

There are more complex ways of defining functionals and their derivatives on manifolds,
involving the jet bundle and differential graded algebras.
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E Sobolev spaces

For a Riemannian manifold (M, g)
A function f or tensor field T belongs to the Sobolev space W k,p if its derivatives up to
order k admit a finite Lp norm, the Lp norm being

‖f‖k,p = (

∫
M

k∑
i=0

|∇(i)f(x)|pdx)
1
p (E.1)

with the component representation

∇(i)f(x) = ∇µ∇ν ...∇σf(x) (E.2)

and the tensor norm |T | = T ∗(T ), with T ∗ the dual of T , or, in components

|T | = Tµν...σT
µν...σ (E.3)

Sobolev Banach space W k,p
0 ⊂ W k,p : closure with respect to the norm of the space of

smooth functions of compact support D
thm : W k,p

0 = Lp(M)
if M has a non-zero injectivity radius [Injectivity radius = inf of injectivity radius at every
point, which is the largest radius for which the exponential map is a diffeomorphism](ie
is complete), then W 1,p

0 = W 1,p.
corrolary : true for compact manifolds
If M has a non-zero injectivity radius, and a Riemann tensor uniformly bounded, and its
derivatives up to k − 2, then for k ≥ 2, W k,p

0 = W k,p
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F Hilbert spaces and operator algebras

To define quantum theories properly, we will need to define Hilbert spaces and the linear
operators that act upon them.

F.1 Hilbert spaces

F.1.1 Definition

Hilbert spaces are vector spaces with additional structures defined on them. As a re-
minder, here are the axioms of a vector space over a field K.
A vector space (V,+, ·) is a set V equipped with two operations,

+ : V × V → V

· : K × V → V (F.1)

As this is usually not an issue, there will be no specific symbols to differentiate the sum
and product for the vector space and the field. The vector space then obeys

• For two vectors X, Y ∈ H, X + Y ∈ H

• There is a zero vector 0 ∈ H such that for every vector X, X + 0 = X.

• For a scalar value k ∈ K and a vector X ∈ H, kX ∈ H

• For every vector X ∈ H, there corresponds an inverse −X such that X +−X = 0

• The addition is commutative and associative. It is also distributive with the scalar
multiplication.

A Hilbert space is also equipped with a sesquilinear form 〈·, ·〉, defined by

〈·, ·〉 : H×H → R+ (F.2)

which is sesquilinear, that is, for X, Y, Z ∈ H and a, b ∈ R,

〈X, aY + bZ〉 = a〈X, Y 〉+ b〈X,Z〉
〈aX + bY, Z〉 = ā〈X,Z〉+ b̄〈Y, Z〉

〈X, Y 〉 = 〈Y,X〉 (F.3)

Vector space on the field K, K = C or R. For quantum theory, K = C
A Hilbert space is then defined as the quadruple (H,+, ·, 〈·, ·〉).

F.1.2 Properties

The sesquilinear products naturally defines a norm on H

‖ · ‖ : H → R+

X → ‖X‖ =
√
〈X,X〉 (F.4)

‖X‖ is guaranteed to be positive real by 〈X,X〉 = 〈X,X〉
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F.1.3 Linear operators on a Hilbert space

Linear operator on a dense subset D ⊂ H

A : D → H (F.5)

Norm on operators :

|A| = sup
X∈D

[A(X)] (F.6)

Adjoint of an operator A : An adjoint operator A∗ is an operator such that

〈AX, Y 〉 = 〈X,A∗Y 〉 (F.7)

An operator is then defined as hermitian if it acts in the same way on vectors as its
adjoints

〈AX, Y 〉 = 〈X,AY 〉 (F.8)

Self-adjoint if both hermitian and D(A) = D(A∗)
C∗ algebra : Banach algebra over C

F.1.4 Density matrices

Density matrix : for a quantum state |ψ〉,

ρ̂ = |ψ〉〈ψ| (F.9)
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G Path integrals

A path integral is an integral defined on a function space. If we take some space of
configuration C with the structure of a Banach space, with the σ-algebra Σ, then we
define a measure

µ : ΣC → R (G.1)

Unfortunately, unlike for the case of finite-dimensional Banach spaces, there is no infinite-
dimensional analogue of the Lebesque measure.

Theorem G.1. The only locally finite and translation invariant Borel measure µ on an
infinite-dimensional separable Banach space is the trivial measure µ(A) = 0.

Proof. For X some infinite-dimensional separable Banach space, take an open ball B(ε)
of radius ε > 0, with a ε such that, by local finiteness, µ(B(ε)) < ∞. As X is infinite-
dimensional, it is possible to find an infinite sequence of pairwise disjoint open balls
{Bi(ε/4)}i∈N such that for all i, Bi(ε/4) ⊂ B(ε).
As the measure is translation invariant, for all i, j ∈ N, µ(Bi(ε/4)) = µ(Bj(ε/4)), and
since they are subsets of B(ε), µ(Bi(ε/4)) ≤ µ(B(ε)) <∞.
Then, by property of the measure, we have

µ(B(ε)) ≤
∞∑
i=0

Bi(ε/4) (G.2)

which will only be finite if µ(Bi(ε/4)) = 0, and then µ(B(ε)) = 0. Since X is separable,
there is an open cover by open balls of radius ε/4. As all of them have measure 0,
µ(X) = 0, and so µ is the trivial measure.

Instead of using the Lebesgue measure, the most common measure used (for free theories,
anyway) is the standard Gaussian (or Wiener) measure.

Definition G.2. A standard Gaussian measure γ on an infinite-dimensional separable
Banach space X is a Borel measure with the following properties :

•

For some completion of the Borel σ-algebra B0(Rn)
Standard Gaussian measure γn : B0(Rn)→ [0, 1]

γn(A) =
1

(2π)
n
2

∫
A exp(−1

2
‖x‖2)dλn(x) (G.3)

Infinite dimensional gaussian measure is well defined
Classical Wiener space :

H = L2,1
0 ([0, T ],Rn) (G.4)

This corresponds to the space of paths γ : [0, T ]→ Rn with L2 first derivatives.

Proposition G.3. H is an infinite-dimensional separable Banach space.

Proof. Inner product :

〈γ1, γ2〉 =

∫ T

0

〈γ̇1(t), γ̇2(t)〉dt (G.5)
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G.1 The Feynman path integral

Less rigorously, we can define the path integral by a limit process commonly used in
physics, the Feynman path integral. For a

〈φ1, t1|F |φ2, t2〉 =

∫ φ2

φ1

Dφ(t)FeiS[φ]

= lim
n→∞

∫ n∏
i=0

d

A
(G.6)

The fact that the Lebesgue measure is used here, despite being shown to be 0 in the
infinite-dimensional case, is due to a conflict of the various terms : as n → ∞, the
measure goes to 0 while the exponent diverges.

Theorem G.4. The Feynman path integral is not defined by a measure.

Proof.
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H Probabilities and information theory

H.1 Kolmogorov probabilities

Probability space : (Ω, F, P )
Ω the set of probability events, F a σ-algebra of Ω, P : Ω→ R the probability function
Probability axioms :
The probability of any event is non-negative

P (X) ≥ 0 (H.1)

The probability of any event occuring is 1

P (Ω) = 1 (H.2)

σ-additivity :

H.2 Quantum probabilities

H.3 Information theory
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I Full spacetime structure

PM FM TM T ∗M

M M M M

Rn

πF πT

[

πT∗
]

φ

Figure 19: Structure of the spacetime manifold
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