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Couples are things whole and
things not whole, what is drawn
together and what is drawn
asunder, the harmonious and the
discordant. The one is made up
of all things, and all things issue
from the one.

Heraclitus
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Chapter 1

Introduction

While not a new phenomenon by any mean, there is a certain recent trend of
trying to mathematize certain philosophical theories, in particular ideas relating
to dialectics.

An important focus of dialectics is to consider oppositions between concepts. In
the case of metaphysics, those oppositions can be for instance

• One / Many

• Sameness / Difference

• Being / Nothing

• Space / Quantity

• General / Particular

• Objective / Subjective

• Qualitative / Quantitative

The oldest of such thoughts goes back to ancient greek traditions, the opposition
between the ideas of Parmenides[1] and Heraclitus.

Medieval example : Nicholas of Cusa, De Docta Ignorantia (on learned igno-
rance) [2].

“Now, I give the name “Maximum” to that than which there cannot be any-
thing greater. But fullness befits what is one. Thus, oneness—which is also
being—coincides with Maximality. But if such oneness is altogether free from
all relation and contraction, obviously nothing is opposed to it, since it is Abso-
lute Maximality. Thus, the Maximum is the Absolute One which is all things.
And all things are in the Maximum (for it is the Maximum); and since nothing is

1



2 CHAPTER 1. INTRODUCTION

opposed to it, the Minimum likewise coincides with it, and hence the Maximum
is also in all things. And because it is absolute, it is, actually, every possible
being; it contracts nothing from things, all of which [derive] from it.”

The notion of Haecceity by Scott Dunn

“Because there is among beings something indivisible into subjective parts—that
is, such that it is formally incompatible for it to be divided into several parts each
of which is it—the question is not what it is by which such a division is formally
incompatible with it (because it is formally incompatible by incompatibility),
but rather what it is by which, as by a proximate and intrinsic foundation, this
incompatibility is in it. Therefore, the sense of the questions on this topic [viz.
of individuation] is: What is it in [e.g.] this stone, by which as by a proximate
foundation it is absolutely incompatible with the stone for it to be divided into
several parts each of which is this stone, the kind of division that is proper to a
universal whole as divided into its subjective parts?”

The first major author for the exact field that we will broach here is Kant and
his transcendental logic [3]

The main author for these recent trends target is Hegel and his Science of
Logic [4], where he describes his objective logic. The ”classical” logic originally
described by Aristotle, the logic of propositions and such, is described under
the term of subjective logic

Heidegger?

The original attempt at the formalization of those ideas (or at least ideas similar
to it) was by Grassmann[5], giving his theory of extensive quantities [vector
spaces], which while it was commented on and inspired some things, mostly did
not go much further.

In modern time, this programme was originally started by Lawvere[6]

“It is my belief that in the next decade and in the next century the technical
advances forged by category theorists will be of value to dialectical philosophy,
lending precise form with disputable mathematical models to ancient philo-
sophical distinctions such as general vs. particular, objective vs. subjective,
being vs. becoming, space vs. quantity, equality vs. difference, quantitative
vs. qualitative etc. In turn the explicit attention by mathematicians to such
philosophical questions is necessary to achieve the goal of making mathematics
(and hence other sciences) more widely learnable and useable. Of course this
will require that philosophers learn mathematics and that mathematicians learn
philosophy.”

nlab[7]

[8, 9, 10, 11, 12, 13]

As is traditional for such types of philosophy, the writings are typically fairly
abstract and lacking example. For a more pedagogical exposition, I have tried
here to include more examples and demonstrations to such ideas. I am not an
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expert in algebraic topology by any mean and have tried my best to explain
those notions without using notions from this field.

Note that while some of these ideas could be argued to be fairly faithful trans-
lations of the philosophical ideas, others seem more to be generally inspired by
them, the original notion of unity of opposites being more of a collection of
different ideas on that theme than a rigorous construction. While such notions
as quantity from the abstraction to pure being seem to have some parallels,
I do not believe that Hegel had particularly in mind the concept of a graded
algebra when he spoke of the opposition between das Licht and die Körper des
Gegensatzes (in particular, this opposition is true regardless of dynamics, and
therefore should not be particularly relevant to the solidity of a body), but if the
opposition can somehow mirror the adjunction of bosonic and fermionic modal-
ities, why not look into it. The notion of being-for-itself and being-for-one are
[according to X] more related to consciousness than etc.

The notions described here are furthermore not firmly rooted in the formalism
but merely described by it, as many of these notions are already needed to define
the formalism. In particular, it is difficult to define any theory without the
concept of discrete objects (in our case, by rooting the formalism of categories
in the notion of sets, and in fact in general in any thought process requiring to
have different ideas as discrete entities). The rooting of the notion of oneness in
terminal objects are somewhat superficial, as the very notion of a terminal object
already requires the notion of oneness, ie in the unique morphism demanded by
universal properties.

Actual applications of dialectical logic [14, 15] also seem fairly disconnected from
the formalism developed here, so that we will have to look into it separately.

It is therefore best to keep in mind that

[12, 16, 17, 18, 19, 20, 21, 22]

Transitions Into, With, and From Hegel‘s Science of Logic

Before going into those various formalizations, we will first have a rather in
depth look at the formalisms on which these are based, which are type theory
and category theory.

https://www.uni-heidelberg.de/fakultaeten/philosophie/philsem/md/philsem/personal/koch_hegel_science_of_logic_winter_2016.pdf
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Chapter 2

Types

One basic element of the theory discussed is that of types[23], which will relate
to the notion of categories and logic later on [trinitarity]

Relation with whatever Kant idk

A type is, as the name implies, a sort of object that some mathematical object
can be. We denote that an object c is of type C by

c : C (2.1)

and say that c is an instance of type C.

The typical simple example, as used in mathematics and computation theory,
is that of integers. An integer n is an instance of the integer type, n : N.

Types being themselves a mathematical object, we also have some type for types
Type, although to avoid some easily foreseeable Russell style paradox (called
the Girard paradox[24]), we will instead use some hierarchy of such types, called
type universes :

C : Type0,Type0 : Type1,Type1 : Type2, . . . (2.2)

Although as we will not really require much forray into the hierarchy of type
universes, we will simply refer Type0 as Type.

Now given two types A,B ∈ Type, we can define another type called the function
type of A to B :

f : A→ B (2.3)

Sequent calculus with types? Logic?

5



6 CHAPTER 2. TYPES

2.1 Dependent types

We speak of dependent types for a type that depends on a value, ie a ”type”
that is actually a function from one type to the universe of types,

a : A ⊢ B(a) : Type (2.4)

B as a whole is the dependent type of A, with each instance B(a)

2.2 Martin-Löf type theory

The basis for our type theory will usually be some Martin-Löf type theory, which
corresponds to intuitionistic logic in the trinitarianism view, and is generally a
rather universal sort of approach to logic (also corresponds to topos). [25]

There are three basic types for it, called the finite types :

• The zero type 0, or empty type ∅ or ⊥, which contains no terms.

• The one type 1, or unit type ∗, which contains one canonical term.

• The two type 2, which contains two canonical term.

Empty type for nothingness, something that doesn’t exist

Unit type for existence

Two type for a choice between two values, such as boolean values.

As with any type theory, those types also give us function types

⊬→ ⊬ : the empty function (no term or 1 term?) ⊮→ ⊮ : ⊮→ ⊭ :

In addition to these types, we have a variety of type constructors, which allow
us to construct additional types from those basic types.

Sum type constructor :
∑

The sum of two types gives us a pair of the individual types, ie

a : A, b : B ⊢ (a, b) : A×B (2.5)

Dependent sum : the type of the second element might depend on the value of
the first.

∑
n:N

Vect(R, n) (2.6)
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Indexed sets

Product type
∏

Equality type

Inductive type

2.3 Homotopy types

A further refinement of type theory is the notion of homotopy type, where in
addition to identity types, we also include the more general notion of equivalence
types.

Definition 1 Two types A,B : Type are said to be equivalent, denoted A ∼= B,
if there exists an equivalence between them.

(A = B)→ (A ∼= B) (2.7)

Univalence axiom :

(A = B) ∼= (A ∼= B) (2.8)

Correspondence between type theory and category theory :

• A universe of types is a category

• Types are objects in the category T ∈ Obj(C)

• A term a : A of A is a generalized element of A

• The unit type ∗ if present is the terminal object

• The empty type ∅ if present is the initial object

• A dependent type x : A ⊣ B(x) : Type is a display morphism p : B → A,
the fibers p−1(a) being the dependent type at a : A.

2.4 Modalities
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Chapter 3

Categories

As is often the case in foundational issues in mathematics, the foundations used
to define mathematics can easily become circular. In our case, although category
theory can be used to define set theory and classical logic, as well as your
other typical foundational field like model theory, type theory, computational
theory, etc, we still need those concepts to define category theory itself. In our
case we will simply use implicitly classical logic [the external logic?] and some
appropriate set theory like ETCS[26] (as ZFC set theory will typically be too
small to talk of important categories).

Definition 2 A category C is a structure composed of a class of objects Obj(C)
and a class of morphisms Mor(C) such that

• There exists two functions s, t : Mor(C)→ Obj(C), the source and target
of a morphism. If s(f) = X and t(f) = Y , we write the morphism as
f : X → Y .

• For every object X ∈ Obj(C), there exists a morphism IdX : X → X,
such that for every morphism g1 with s(g1) = X and every morphism g2
with t(g2) = X, we have g1 ◦ IdX = g1 and IdX ◦ g2 = g2.

• For any two morphisms f, g ∈ Mor(C) with s

To simplify notation, if there is no confusion possible, we will write the set of
objects and the set of morphisms as the category itself, ie :

X ∈ Obj(C) := X ∈ C (3.1)

f ∈ Mor(C) := f ∈ C (3.2)

9



10 CHAPTER 3. CATEGORIES

Categories are often represented, in totality or in part, by diagrams, a directed
graph in which objects form the nodes and morphism the edges, such that the
direction of the edge goes from source to target.

Throughout this section we will use a variety of common categories for examples.
Some of them will be seen in more details later on as well in the section on the
categories we will investigate for objective logic 5.

Before we go on detailing examples of categories, first a quick note on skele-
tonized categories. It is common in category theory to more or less assume the
identity of objects that are isomorphic. This is not necessarily the case formally
speaking (the category of sets can be seen as having multiple isomorphic sets in
it, like {0, 1}, {1, 2}, etc), but for some purposes (such as trying to get a broad
view of that category) it will be useful to consider the category where the set
of objects is given as the equivalence class up to isomorphism.

Definition 3 A category C is skeletal if all isomorphisms are identities, and
the skeleton of a category C, written sk(C), is given by the equivalence class of
objects up to their isomorphisms, ie

Obj(sk(C)) = {[X]|∀X ′ ∈ [X], ∃f ∈ iso(C), f : X → X ′} (3.3)

3.1 Examples

A few categories can easily be defined in categorical terms alone, such as the
empty category ∅, which is the category with no objects and no morphisms
(with the empty diagram as its diagram). We also have the discrete categories
n for n ∈ N, which consist of all the categories of exactly n objects and n
morphisms (the identities of each object)

. . . • • • . . .

Id Id Id

The empty category is in fact itself the discrete category 0.

Many categories can also be defined using typical mathematical structures built
on set theory, using sets as objects and functions as morphisms.

Example 4 The category of sets Set has as its objects all sets (Obj(Set) is
the class of all sets), and as its morphisms the functions between those sets.

If we consider the skeletonized version of Set, where we only consider unique
sets of a given cardinality, its diagram will look something like this for the first
three elements classified by cardinality :
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∅ {•1} {•1, •2} . . .
∅

∅

X1

X2

∆•

Example 5 The category of topological spaces Top has as its objects the topo-
logical spaces (X, τX), and as morphisms f : (X, τX) → (Y, τY ) the continuous
functions between two such spaces.

Example 6 The category of vector spaces Vectk over a field k has as its objects
the vector spaces over k, and as its morphisms the linear maps between them.
The hom-set between V1 and V2 is therefore the set of linear maps L(V1, V2) (see
later for enriched category)

Diagram : finite dimensional case classified by dimension

k0 k k2 . . .
x∈k L

Example 7 The category of rings Ring has as its objects rings, and as mor-
phisms ring homomorphisms.

Example 8 The category of groups Grp has as its objects groups G, and as its
morphisms group homomorphisms.

Example 9 The category of smooth Cartesian spaces CartSp has as its objects
subsets of Rn, and as morphisms smooth maps between them.

Besides concrete categories, another common type of categories is partial orders,
which are defined as usual in terms of sets, ie a partial order (X,≤) is a set X
with a relation ≤ on X ×X, obeying

• Reflexivity : ∀x ∈ X, x ≤ x

• Antisymmetry : ∀x, y ∈ X, x ≤ y ∧ y ≤ x→ x = y

• Transitivity : ∀x, y, z ∈ X, x ≤ y ∧ y ≤ z → x ≤ z

As a category, a partial order is simply defined by Obj(C) = X. Its morphisms
are defined by the relation ≤ : if x ≤ y, there is a morphism between x and y,
which we will call ≤x,y formally, or simply ≤ if there is no risk of confusion. This
obeys the categorical axioms for morphisms as the identity morphism Idx is sim-
ply given by reflexivity, ≤x,x, and obeys the triangular identities by transitivity
:
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≤x,x ◦ ≤x,y=≤x,y ↔ x ≤ x ∧ x ≤ y → x ≤ y (3.4)

≤x,y ◦ ≤y,y=≤x,y ↔ x ≤ y ∧ y ≤ y → x ≤ y (3.5)

Morphisms : f : X → Y means X ≤ Y . Between any two objects, there
are exactly zero or one morphisms. The identity is X ≤ X, composition is
transitivity

Example 10 Given a topological space (X, τ), its category of open Op(X) is
given by its set of open sets τ with the partial order of inclusion ⊆.

Example 11 The integers Z as a totally ordered set (Z,≤) forms a category.

. . . −2 −1 0 1 2 . . .
≤ ≤ ≤ ≤ ≤ ≤

The real line is such a category

The category of (locally small) categories Cat

Another type of such categories is the simplicial category ∆. This can be con-
sidered as a category of categories, where each object of ∆ is the finite total
order n⃗, and the morphisms are order-preserving functions,

∀f : m⃗→ n⃗, f(mi → mj) = f(mi)→ f(mj) (3.6)

Example 12 The interval category I is composed of two elements {0, 1} and
a morphism 0→ 1.

I = {0→ 1} (3.7)

3.2 Morphisms

As our categories are fundamentally built from sets and classes, we can look at
specific subsets of our set of morphisms, Mor(C), with specific properties.

A simple example is simply the set of all morphisms between two objects :

Definition 13 The hom-set between two objects X,Y ∈ C is the set of all
morphisms between X and Y :

HomC(X,Y ) = {f ∈ Mor(C)|s(f) = X, t(f) = Y } (3.8)
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This notion is more rigorously only valid for what are called locally small cat-
egories, where the cardinality of HomC(X,Y ) is small enough to be a set. If
the cardinality is too large, and could only fit in say a class, it is more properly
described as a hom-object. This will not affect our discussion much as most
categories of interest are locally small.

Example 14 The hom-set on the category of sets HomSet(X,Y ) is the set of
all functions between X and Y

Example 15 The hom-set on the category of vector spaces HomVec(X,Y ) is
the set of all linear functions between X and Y , also known as L(X,Y ).

Example 16 The hom-set on the category of topological spaces HomTop(X,Y )
is the set of all continuous functions between X and Y , also known as C(X,Y ).

Induced morphism on hom-sets : for a morphism f : X → Y , the induced
function f∗ on the hom-sets

f (3.9)

Beyond that, there are special types of morphisms

Definition 17 A monomorphism f : X → Y is a morphism such that, for
every object Z and every pair of morphisms g1, g2 : Z → X,

f ◦ g1 = f ◦ g2 → g1 = g2 (3.10)

Left-cancellability

alternatively, a morphism is mono if its induced morphism f∗ on hom-sets is

Example 18 on Set, a monomorphism is an injective function.

Proof 1 If f : X → Y is a monomorphism, then given two elements x1, x2 ∈
X, represented by morphisms x1, x2 : {•} → X, then we have

f ◦ x1 = f ◦ x2 → x1 = x2 (3.11)

So that we can only have the same value if the arguments are the same, making
it injective. Conversely, if f is injective, take two functions g1, g2 : Z → X. As
the functions in sets are defined by their values, we need to show that

∀z ∈ Z, f(g1(z)) = f(g2(z))→ g1(z) = g2(z) (3.12)

By injectivity, the only way to have f(g1(z)) = f(g2(z)) is that g1(z) = g2(z).
As this is true for every value of z, g1 = g2.
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It is tempting to try to view monomorphisms as generalizing injections, but
categories may lack both elements on which to define such notions and

In terms of hom sets : for every Z, the hom functor Hom(Z,−) maps monomor-
phisms to injective functions between hom sets :

Hom(Z,X) ↪→ Hom(Z, Y ) (3.13)

Definition 19 An epimorphism f : X → Y is a morphism such that, for every
object Z and every pair of morphisms g1, g2

Mono and epi on sets, etc

Definition 20 An isomorphism f : X → Y is a morphism with a two-sided
inverse, ie there exists a morphism f−1 : Y → X such that

f ◦ f−1 = IdY (3.14)

f−1 ◦ f = IdX (3.15)

Example 21 In the category of sets, isomorphisms are bijections.

Despite the most typical examples, it is not in general true that a morphism
that is both a monomorphism and an epimorphism is an isomorphism.

Definition 22 For a given object X, the subset of all its endomorphisms which
are isomorphisms are called its core :

core(X) = {f ∈ HomC(X,X) | f isomorphism} (3.16)

Core has a group structure

Theorem 23 The composition of two monomorphisms is a monomorphism.

Proof 2

Theorem 24 The composition of two epimorphisms is an epimorphism.

Proof 3

Theorem 25 For f, g two morphisms that can be composed as g ◦ f , if g ◦ f
and g are monomorphisms, then so is f .

Proof 4

As monomorphisms represent embeddings and inclusions, this means in partic-
ular that if we have the inclusion S ↪→ X and

Split monomorphisms and split epimorphisms
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3.3 Functors

Functors are roughly speaking functions on categories that preserve their struc-
tures. In more details,

Definition 26 A functor F : C → D is a function between two categories
C,D, mapping every object of C to objects of D and every morphism of D to
morphisms of D, such that categorical properties are conserved :

s(F (f)) = F (s(f)) (3.17)

t(F (f)) = F (t(f)) (3.18)

F (IdX) = IdF (X) (3.19)

F (g ◦ f) = F (g) ◦ F (f) (3.20)

Example 27 The Identity functor IdC : C → C maps every object and mor-
phism to themselves.

Example 28 The constant functor ∆X : C→ D for some object X ∈ D is the
functor mapping every object in C to X and every morphism to IdX .

Example 29 For a category where the objects can be built from sets (such as
Top or Vectk), the forgetful functor UC : C→ Set is the functor sending every
object to their underlying set, and every morphism to their underlying function
on sets.

A common functor is the forgetful functor, which maps a category that is com-
posed of a set with extra structure its underlying set. For instance, the category
Top has a forgetful functor U : Top→ Set, which maps every topological space
to its set, and every continuous function to the corresponding function on sets.
If we have a set X and on it are all the different topologies (X, τi), then the
forgetful functor maps

U((X, τi)) = X (3.21)

The forgetful functor on Top is obviously not injective, as two topological spaces
with the same underlying set (such as any set of cardinality ≥ 1 with the discrete
or trivial topology) will map to the same set.

Functors on partial orders : Order isomorphism

Example : negation
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Definition 30 A contravariant functor is a functor from the opposite category,
ie F : C → D is a contravariant functor equivalently to a functor F : Cop → D
is a functor. In particular, this changes the rules as

s(F (f)) = F (t(f)) (3.22)

t(F (f)) = F (s(f)) (3.23)

F (g ◦ f) = F (f) ◦ F (g) (3.24)

Theorem 31 The composition of contravariant and covariant functors works
as follow :

C (3.25)

A generalization of functors is the notion of multifunctors (we mean here specif-
ically the jointly functorial multifunctor)

Definition 32 A multifunctor F : C → D is a function from a product of
category to another category.

”Functor categories serve as the hom-categories in the strict 2-category Cat.”

3.3.1 The hom-functor

The hom-bifunctor HomC(−,−) is the map

HomC(−,−) : C×C → Set (3.26)

(X,Y ) 7→ HomC(X,Y ) (3.27)

mapping objects of C to their hom-sets. Given a specific object X, we can
furthermore define two types of hom functors : the covariant functor Hom(X,−),
also denoted by hX , and the contravariant functor Hom(−, X), denoted by hX .

Example :

3.3.2 Full and faithful functor

Full, faithful functor

Definition 33 A functor F : C→ D induces the function

FX,Y : HomC(X,Y )→ HomD(F (X), F (Y )) (3.28)

F is said to be
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• faithful if FX,Y is injective

• full if FX,Y is surjective

• fully faithful if FX,Y is bijective

Despite the analogy of full and faithful functors with surjective and injective
functions,

Functors that are fully faithful but not injective/surjective on objects or mor-
phisms

3.3.3 Subcategory inclusion

An important type of functor is the inclusion of a subcategory. If we take a
category C, and then create a new category S for which Obj(S) ⊆ Obj(C)

Definition 34 An inclusion of a subcategory S in a category C is a functor
ι : S ↪→ C, such that ι(Obj(S)) ⊆ Obj(C), ι(Mor(S)) ⊆ Mor(C), and

• If X ∈ S, then IdX ∈ S

• For any morphism f : X → Y in S, then X,Y ∈ S.

•

For discrete categories, n in m if n ≤ m

Full subcategories

Example 35 The linear order of the integers Z has inclusion functors to R

ι : Z ↪→ R (3.29)

If treated as Canonical inclusion :

ιh : Z → R (3.30)

k 7→ h+ k (3.31)

Example 36 The category of finite sets FSet is a subcategory of Set, via the
identity functor restricted to finite groups.

Example 37 The category of Abelian group Ab in Grp
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3.4 Natural transformations

Natural transformations are a type of transformations on functors (2-morphisms
in Cat)

Definition 38 For two functors F,G : C → D, a natural transformation η
between them is a map η : F → G which induces for any object X ∈ C a
morphism on D

ηX : F (X)→ G(X) (3.32)

and for every morphism f : X → Y the identity

ηY ◦ F (f) = G(f) ◦ ηX (3.33)

[Commutative diagram]

Example 39 The identity transformation IdF : F → F on the functor F :
C→ D is the natural tranformation for which every component IdF,X : F (X)→
F (X) for X ∈ D is the identity map. This obeys the identity as

ηY ◦ F (f) = IdY ◦ F (f) (3.34)

= F (f) (3.35)

= F (f) ◦ IdX (3.36)

Example 40 The category of groups Grp has a functor to the category of
Abelian groups AbGrp, the Abelianization functor

Ab : Grp → AbGrp (3.37)

G 7→ G/[G,G] (3.38)

[show functoriality] There is a natural transformation from the identity functor
on groups to the abelianization endofunctor

η : IdGrp → Ab (3.39)

Example 41 Given the category Vectk, for any vector space V we have the
dual space V ∗ [see later in the internal hom section for why] of linear maps
V → k, and its double dual V ∗∗ of linear maps V ∗ → k. We would like to show
that there is an equivalence between V and V ∗∗.

Example 42 The opposite group functor is simply given by the opposite cate-
gory functor on Grp. Groups to opposite group

For constant F and G : cone and cocone
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3.5 Yoneda lemma

One of the common philosophical idea underlying category theory is that of the

”An object is completely determined by its relationships to other objects”

For a functor F : C→ Set, for any object X ∈ C

よ : C→ [C,Set] (3.40)

Functor lives in the functor space SetC
op

Nat(hA, F ) ∼= F (A) (3.41)

Example 43 Consider the category of a single group (G = Aut(∗)). A func-
tor F : G → Set is a set X and a group homomorphism to its permutation
group G→ Perm(X) (A G-set). Natural transformation is an equivariant map
Cayley’s theorem

Example 44

3.6 Enriched categories

By default, we consider the hom sets of a category HomC(X,Y ) to be sets, but
many categories may have additional structure on the hom set. For instance, if
we consider the category Vectk of vector spaces over the field k, its morphisms
are k-linear maps, and its hom-sets are

HomVectk(V,W ) = Lk(V,W ) (3.42)

However, in addition to being a set, Lk(V,W ), the k-linear maps, also form
themselves a vector space, ie we can define the sum f + g of two linear maps,
and the scaling αf , α ∈ k, of a linear map.

Definition 45 An enriched category C over V a monoidal category (V,⊗, I)
is a category such that each hom-set HomC(X,Y ) is associated to a hom-object
C(X,Y ) ∈ V, such that every hom-object in V obeys the same rules regarding
composition and identity, which are

◦X,Y,Z : C(Y,Z)⊗ C(X,Y )→ C(X,Z) (3.43)

jX : I → C(X,X) (3.44)
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with the following commutation diagrams :

[composition is associative]

[Composition is unital]

Example 46 A category enriched in Set is a locally small category.

Example 47 A k-linear category is enriched over Vectk.

3.7 Comma categories

The notion of a comma category can be used to describe categories whose objects
are the morphisms of another category.

Definition 48 The comma category (f ↓ g) of two functors f : C → E and
g : D → E is the category composed of triples (c, d, α) such that α : f(c)→ g(d)
is a morphism in E, and whose morphisms are pairs (β, γ)

β : c1 → c2 (3.45)

γ : d1 → d2 (3.46)

that are morphisms in C and D, such that α2 ◦ f(β) = g(γ) ◦ α1 [Commutative
diagram]

Composition

Def via pullback

Comma categories are rarely used directly, but are more typically used to de-
fine more specific operations. The three important one we will see are arrow
categories, slice categories and coslice categories.

3.7.1 Arrow categories

Arrow categories

3.7.2 Slice categories

Slice categories

Given an object X ∈ C, we can define the over category (or slice category) C/X

by taking all morphisms emanating from X as objects :

Obj(C/X) = {f |s(f) = X} (3.47)
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As a comma category, this is the comma category of the two functors IdC : C→
C and ∆X : 1→ C, of the identity functor on C and the inclusion of the object
X, in which case C/X = (IdC ↓ ∆X) is defined by the triples (c, ∗, α) of objects
c ∈ C, the unique object ∗ ∈ 1, and morphisms in C α : c → X. As there
is only one object in the terminal category, we can drop it as it is isomorphic
to simply (c, α), and furthermore, c is implied by α as simply being the source
term. Our slice category is therefore indeed just defined by the set of morphisms
from objects of the category to our selected object.

Slice categories are useful to consider objects in a category as a category in
themselves, where the objects are simply all the relations they have with all
other objects in the category.

Example 49 In Set, given a set X, the slice category Set/X has as its objects
all functions with codomain X, f : Y → X, and as morphisms all functions
between sets g : Y → Y ′ for which

f ′(g(y)) = f(y) (3.48)

Category of X-indexed collections of sets, object f : Y → X is the X-indexed
collection of fibers {Yx = f−1({x})| ∈ X}, morphisms are maps Yx → Y ′x

[fiber product Y ×X Y ′ is the product in the slice category]

If we look for instance at N as a set (the natural number object of sets), its slice
category Set/N is the category of all functions to numbers

Example 50 For a poset P, the slice category P/p is isomorphic to the downset
of p, ie the subcategory of every element {q|q ≤ p}.

Objects : Idp, and every map ≤q,p (corresponding to p and object inferior to p),
morphisms are

Example 51 Top/X is the category of covering spaces over X.

3.7.3 Coslice categories

Coslice categories

comma categories, under categories?

Dependent sum, dependent product, indexed sets

3.7.4 Base change

Base change functor
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3.8 Limits and colimits

In category theory, a limit or a colimit are roughly speaking a construction
on a category. For some given set of objects A,B, . . . in our category C, and
some morphisms between them, a limit or colimit of those objects will be some
construction performed using those. Those constructions can be quite different,
but overall, a limit will often be like a ”subset”, while a colimit is more of an
”assemblage” of those.

Definition 52 For a functor F : C→ D, a universal property from an object
X ∈ D to F

Universal property, kan extension?

A (co)limit is done using an indexing category, which is roughly the ”shape”
that our construction will take. An indexing category is a small category, ie
it has a countable number of objects and morphisms small enough that you
could fit them into sets. Typically they are fairly simple ones. As we are only
interested in their shape, it’s common to denote the objects by simple dots.
Examples include the discrete categories of n elements n,

• • • . . .

The span category :

•

• •

and the cospan :

• •

•

and the parallel pair :

•⇒ •
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Directed and codirected set, sequential and cosequential limit

To do our constructions, we need to send this diagram’s shape into our category
C, which we do by using some functor F : I → C, producing a diagram :

Definition 53 A diagram of shape I into C is a functor F : I → C.

The image of this functor in C will then be some subset of C that ”looks
like” I, although we are not guaranteed that the objects and morphisms of I
will be mapped injectively into C (this simply corresponds to cases where our
construction will use the same object or morphisms several times).

Let’s now consider the constant functor ∆X : I → C, which for X ∈ C sends
every object of I to X. If we can find a natural transformation between ∆X

and our diagram F : I → C, we will have either a cone over F η : ∆X ⇒ F or
a cone under F η : F ⇒ ∆X .

Definition 54 The limit of a diagram F : I →M is an object limF ∈ Obj(C)
and a natural transformation η : ∆limF → F , such that for any X ∈ Obj(C)
and any natural transformation α : ∆X → F , there is a unique morphism
f : X → limF such that α = η ◦ F . The cone of ∆limF over F is the universal
cone over F .

In other words, if we pick any object X in our category C and define some
collection of morphisms from X to other objects

Let’s consider for instance the case of the trivial category 1. Any functor F :
1→ C is simply a choice of an object in C, mapping • to F (•) = A, ie it is just
the constant functor ∆A for some A. A natural transformation η : ∆X → F is
them simply η : ∆X → ∆A, and conversely, η : F → ∆X is η : ∆A → ∆X . The
components of this natural transformations are simply a morphism from X to
A (and a morphism from A to X).

Limit and colimit

Types of indexing category I and their limit and colimit :

Definition 55 Given the empty category 0, the limit LimF of a diagram F :
0→ C is its terminal object, and the colimit is its initial object.

As there exists only one functor from the empty category to any other cate-
gory (the empty functor ∅), the initial and terminal objects do not depend on
specific objects and are simply special objects of the category. Every ”constant
functor” ∆X sending objects of I to X ∈ Obj(C) is also the empty functor,
sending them trivially to X by simply not having any objects to send. This
is therefore also true of the constant functor to the limit lim∅, meaning that
the natural transformation η : ∅ → ∅ is simply the identity transformation
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Id∅∅ . This means that the limit of the empty diagram in a category C is the
object (defined by no other objects in the category) lim∅ such that for any
natural transformation α : ∆X → F (as we’ve seen, only possibly the identity
transformation), there exists a unique morphism f : X → lim∅

[...]

The terminal object t = lim∅ of a category, if it exists, is therefore an object
for which there exists only one morphism from any object X ∈ C to t

Dually, the initial object i = colim∅ of a category, if it exists, is an object for
which there exists only one morphism from i to any object X ∈ Obj(C).

Theorem 56 Initial and terminal objects are unique in a category up to iso-
morphisms.

Proof 5

Initial and terminal objects occur in quite a lot of important categories, and
tend to be somewhat similar objects. In Set, the

3.8.1 Products and coproducts

The product and coproduct are the limits where the diagrams are the discrete
categories of n elements n. This means obviously that the trivial case 0 of the
diagram of zero object is the initial and terminal object, and this will correspond
to the trivial product and coproduct as we will see later :

∑
∅

= 0,
∏
∅

= 1 (3.49)

Any diagram of shape n simply selects n objects in the category (and their
identity functions),

∀F : n→ C, ∃X1, . . . Xn ∈ C, Im(F ) = (X1, . . . , Xn) (3.50)

The constant functor ∆X is the functor sending each of those points to X,
•i → X, and the identity of those points to the identity on X. We will denote
the limit of a diagram F on the discrete category, selecting the objects {Xi},
by

∏
iXi. This product is therefore such that for any natural transformation

α : ∆X → F , there is a unique morphism f = ∆X →
∏
Xi such that α = η ◦F .

What this property means for the product is that given any object X picked in
C,
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3.8.2 Spans and cospans

The span and cospan are dual diagrams, with Span = Cospanop, having an
object connecting to two others for the span

•

• •

or • → • ← • for short, and two objects connecting to one for the cospan :

• •

•

or • ← • → •.

The span diagram can be mapped to any three objects connected thusly. For
A,B,C ∈ C, and f : A→ C, g : B → C, the diagram of shape I will be

A

B C

If we now look at the constant functor ∆X : I → C, this will map our three
objects A,B,C to X, and f and g to IdX . To find the limit of F , we therefore
need to find η : ∆limF → F

For anyX ∈ C, and any α : ∆X → F , there is a unique morphism h : X → limF
such that α = η ◦ F .

Components of α : for every Y ∈ I, a morphism αY : ∆X(Y )→ F (Y ), so

αY : X → F (Y ) (3.51)

F (Y ) can only be A,B,C, so we have three components for objects, and for
f : A → C and g : B → C, then using what we know of ∆X we have the
following commuting diagrams :
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X A

C

αC

αA

f

X B

C

αC

αB

g

F (f) ◦ η (3.52)

The resulting cone is

limF

X A

B C

pA

pB

β

αB
αC

αA

f

g

The limit is the pullback, denoted as A ×C B, along with the two and the
universal cone that we have constructed gives us the commutative square

A×C B A

B C

pB
ηC

pA

f

g

This means that our pullback diagram is given by this object and the two
projectors, obeying

f ◦ pA = g ◦ pB (3.53)

The interpretation of this is the dependent sum of the equality

∑
a:A

∑
b:B

(f(a) = g(b)) (3.54)

Example 57 In Set, the pullback by f : A→ C, g : B → C is the set

A×C B = {(a, b) ∈ A×B|f(a) = g(b)} (3.55)
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Semantics of an equation

Dependent product/sum, indexed objects

Fiber :

Definition 58 The fiber of a morphism f : A→ B is the pullback of the cospan
with the terminal object :

A
f−→ B

point←− ∗ (3.56)

Ex : Fiber of a bundle p : E → B and x : 1→ B is the fiber at x, Ex.

”In an additive category fibers over the zero object are called kernels.”

Cofiber

Definition 59 A cofiber of a morphism f : A → B is the pushout of the span
with the terminal object

∗ ←− A f−→ B (3.57)

cofib(f : A→ B) = (3.58)

Cokernels in additive categories

Pushout :

∗ ←− □∅X −→ X (3.59)

Pushout A ⊔0 B ∼= A ⊔B, therefore

□∅X = X ⊔ 1 (3.60)

3.8.3 Equalizer and coequalizer

•⇒ •

Constant functor : ∆X : I → C maps A,B to X, f, g to IdX

Equalizer corresponds roughly to a solution of an equation, coequalizer to a
quotient?

3.8.4 Directed limits

Given some directed set
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3.8.5 Properties of limits and colimits

Theorem 60 For two diagrams I, J ,

f : colim limD (3.61)

Commutation

Effective morphisms

⊔
i

Ui → U (3.62)

3.8.6 Limits and functors

A common tool in category theory to use is the behaviour of limits under the
action of a functor.

Definition 61 For a functor F : C → D and a diagram J : I → C, a functor
is said to preserve the limit limJ if

F ◦ lim
J

∼= lim
F◦J

(3.63)

Preservation of limits and colimits

Left and right exact functors :

Definition 62 A functor is left exact (resp. right exact)

Maps inital objects to initial objects, products to products, and equalizers to
equalizers

Even if we do not know the explicit limits and colimits of a category, we can
verify that a functor preserves them, using the notion of a flat functor.

Definition 63 A functor is flat

[Flat functors preserve any limit and colimit]

Example 64 The covariant hom-functor preserve limits :

hX(limF ) = lim(hXF ) (3.64)

and the contravariant hom-functor preserves limits in the category Cop, ie col-
imits in C :

hX() (3.65)
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Proof 6

Example : hom-sets of vector spaces with limits?

Example 65 In the category of vector spaces Vec, the covariant hom functor
hV gives us the set of linear transformations L(V,−). If we take a look at
various cases, we have for the terminal object k0 :

hV (k0) = L(V, k0) (3.66)

= {0} (3.67)
∼= {•} (3.68)

The product of two vector spaces is the direct sum

hV (W ⊕W ′) = hV (W )× hV (W ′) (3.69)

The kernel of a linear map f can be described as the equalizer of this map with
the 0 map, Equalizer : for f, 0 : X → Y , the equalizer is ker(f). The two
functions f, g map to

hV (f) = {a ∈ L(X,Y )} (3.70)

hV (0) = {0} (3.71)

hV (ker(f)) = L(V, ker(f)) (3.72)

= eq(hV (f), hV (0)) (3.73)

hV (f) = L(V, ker(f)) (3.74)

= (3.75)

The contravariant one : initial object is also k0, therefore terminal object in op

hV (k0) = L(k0, V ) (3.76)

= {0} (3.77)
∼= {•} (3.78)

Same deal with the coproduct in op, which is also ⊕

hV (W ⊕W ′) = hV (W )× hV (W ′) (3.79)

but lim(hV ◦ ∗) = lim∅ = ∗
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3.9 Monoidal categories

It is common in categories to have some need of defining a binary operation, ie
some function of the type

A×B = C (3.80)

It is common in categories as well to have this notion applied to objects. Given
two objects A,B ∈ C, we want to find a third object C, such that there exists
a bifunctor (−)× (−) : C×C→ C

A×B = C (3.81)

While the notion of bifunctor covers this well enough, we often need to have
additional conditions. A common case is that of a monoid, where we ask that
the operation be associative and unital, ie

(A×B)× C = A× (B × C) (3.82)

∃I ∈ C, I ×A = A× I = A (3.83)

To categorify this notion, we define monoidal categories

Definition 66 A monoidal category (C,⊗, I) is a category C, a bifunctor ⊗,
and a specific object I ∈ C, along with three natural transformations :

a : ((−)⊗ (−))⊗ (−)
∼=→ (−)⊗ ((−)⊗ (−)) (3.84)

(X ⊗ Y )⊗ Z 7→ X ⊗ (Y ⊗ Z) (3.85)

λ : (I ⊗ (−))
∼=→ (−) (3.86)

I ⊗X 7→ X (3.87)

ρ : ((−)⊗ I)
∼=→ (−) (3.88)

(X ⊗ I) 7→ X (3.89)

which obey the following rules :

W ⊗ (X ⊗ (Y ⊗ Z)) (W ⊗X)⊗ (Y ⊗ Z) ((W ⊗X)⊗ Y )⊗ Z))

W ⊗ ((X ⊗ Y )⊗ Z) W ⊗ (X ⊗ Y ))⊗ Z

k

IW⊗aX,Y,Z

k

fi

aW,X⊗Y,Z
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We do not ask the equality for the associator and unitors, as equivalence is
typically what we ask in general for a category. If in addition those equivalences
are equality, we say that this is a strict monoidal category.

Example 67 The tensor product of two vector spaces is a monoid in Vectk

Proof 7 First we need to show that the tensor product is functorial. Given two
morphisms f : X → X ′, g : Y → Y ′, the product f ⊗ g : X ⊗ Y → X ′ ⊗ Y ′

Proof that it is functorial, unit k, associator, unitor, obeys the identities

Example 68 The product and coproduct are both monoidal in Set.

Cartesian monoidal category

Bimonoidal categories

3.10 Internalization

If a category admits set-like properties, typically properties such as finite limits,
monoidal structures or Cartesian closedness, it is possible to recreate many types
of mathematical structures inside the category itself.

Definition 69 In a category C with finite products, a group object G is an
object G ∈ C equipped with the morphisms

• The unique map to the terminal object p : G→ 1

• A neutral element morphism from the terminal object : e : 1→ G

• An inverse endomorphism : (−)1 : G→ G

• A binary morphism on the product : m : G×G→ G

such that all the following diagrams commute

Example 70 Every category with finite product has the trivial group object {e}
which is the terminal object and the unique map to itself.

Example 71 The set of two elements 2, along with a given morphism e : 1→ 2,
the automorphism f : 2→ 2 that is not the identity (the one that exchanges the
two elements) and the morphism 2× 2→ 2

form the internalized group Z2 in Set :

Z2
∼= (2, e, f, f) (3.90)
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Example 72 As groups can be defined using sets, the category of sets contains
every group as group objects using the traditional definition of groups.

Example 73 The group objects in the category Top are the topological groups,
where all group operations are continuous functions.

Example 74 The group objects in the category of smooth manifolds are the Lie
groups, where the group operations are smooth maps.

Definition 75 A ring object

Delooping

3.11 Subobjects

Given an object X in a category C, a subobject S of X is an isomorphism class
of monomorphisms {ιi}

ιi : Si ↪→ X (3.91)

so that the equivalence classes of {ιi} is given by any two such monomorphisms
if there exists an isomorphism between the two subobjects Si;

S = [Si]/(Si ∼= Sj ↔ ∃f : Si → Sj , ∃f−1Sj → Sj , f ◦ f−1 = Id) (3.92)

Isomorphisms given by the automorphism group Aut()

This is meant to define the common mathematical notion of an object being
part of another object in some sense.

Examples :

Example 76 On Set, subobjects are subsets (defined by injections up to the
symmetric group)

Example 77 On Vectk, subobjects are subspaces (defined by injections up to
the general linear group?)

On Top, subobjects are subspaces with the subspace topology

On Ring,

On Grp, subobjects are subgroups
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Example 78 On the category of smooth manifolds SmoothMan, subobjects
are submanifolds, ι : S ↪→ M , where the set of all submanifolds with the same
image up to diffeomorphism of the base Diff(S) are equivalent.

”Let Cc be the full subcategory of the over category C/c on monomorphisms.
Then Cc is the poset of subobjects of c and the set of isomorphism classes of Cc
is the set of subobjects of c. ”

3.12 Simplicial categories

Simplicial category ∆ is made of simplicial objects, ie

[
0⃗
]

= {•} (3.93)[
1⃗
]

= {• → •} (3.94)[
2⃗
]

= {• → • → •} (3.95)[
3⃗
]

= {• → • → • → •} (3.96)

3.13 Equivalences and adjunctions

Like many objects in mathematics, it is possible to try to define some kind of
equivalence between two categories. Like most such things, we try to consider
two mappings between our categories. Let’s consider two categories C,D, and
two functors F,G between them,

C
F

⇄
G

D (3.97)

The usual process of finding equivalent objects in such cases is to have those two
maps be inverses of each other, ie FG = IdD and GF = IdC. The composition
functor FG maps every object and morphism of D to itself and likewise for GF
on C, so that in some sense, the objects X and F (X) are the same objects, and
likewise, f : X → Y and F (f) : F (X)→ F (Y ) represent the same morphism.

If two categories admit such a pair of functors, we say that they are isomorphic.
While this is the most obvious definition of equivalence, it is in practice not
commonly used, as very few categories of interest are actually isomorphic, and
this is generally considered too strict a definition in the philosophy of category
theory, as we are generally more interested in the relationships between objects
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rather than the objects themselves. A good example of this overly strict defi-
nition is that the product of two objects done in a different order will not be
isomorphic.

If we weaken the notion of equivalence, we can look at the case where our two
functors are merely isomorphic to the identity, FG ∼= IdD and GF ∼= IdC, where
there exists a natural transformation η taking FG to IdD.

η : FG → IdD (3.98)

ϵ : Id (3.99)

C D

Triangle identities

For every objects X ∈ C, Y ∈ D, the components of the relevant natural trans-
formations are

IdF (Y ) = ϵF (Y ) ◦ F (ηY ) (3.100)

IdG(X) = G(ϵX) ◦ ηG(X) (3.101)

F ⊣ G
Adjunction between two categories

Example 79 A basic non-trivial example of adjoint functors is the even and
odd functors. If we consider Z as a linear order category, with ≤ as its mor-
phisms, functors are its order-preserving functions. Two specific functors that
we have are the even and odd functors, give by

∀k ∈ Z, Even(k) = 2k, Odd(k) = 2k + 1 (3.102)

These do indeed preserve the order so that for the unique morphism k1 ≤ k2, it
is mapped to the unique morphism 2k1 ≤ 2k2 and similarly for the odd functor.
The corresponding ”inverse” functor is the functor mapping any integer to the
floor of its division by 2 :

⌊−/2⌋ : Z→ Z (3.103)

Even is then the left adjoint and Odd the right adjoint of ⌊−/2⌋. The unit and
counit of Even are :

εl = f ◦ ⌊−/2⌋ (3.104)

[...]

This is however not an equivalence, as the floor function is not strictly an inverse
of the even and odd functor (and not being a faithful functor to begin with), as
⌊(2n)/2⌋ = ⌊(2n+ 1)/2⌋, and we have
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Example 80 Take the two linear order categories of Z and R, with their ele-
ments being the objects and their order relations are the morphisms. The in-
clusion map ι : Z ↪→ R, mapping n ∈ Z to its equivalent real number, is a
functor

We can try to define left and right adjoints for it, by finding two functions
f, g : R→ Z for which there exists

• A left and right counit ϵl : fι→ IdZ and ϵr : ιg → IdR

• A left and right unit ηl : IdR → ιf and ηr : IdZ → gι

And all these must obey the triangle identities

If we take for instance the left adjoint, we need that our function f be such that
there exists a natural transformation between the identity on R (IdR(x) = x)
and our function f reinjected into R : ι(f(x)). For every x, y ∈ R, there’s a
morphism

x

y

≤
η

=⇒
x ι(f(x))

y ι(f(y))

≤

ηl,x

ι(f(≤))
ηl,y

In the context of our linear order, this means that for any two numbers x, y such
that x ≤ y, we have x ≤ ι(f(x)), y ≤ ι(f(y)) and ι(f(x)) ≤ ι(f(y))

x ≤ y ≤ ι(f(y)) (3.105)

and for the counit, we need a natural transformation between the mapping of an
integer into R and then back into Z via f with f(ι(n)), and the identity on Z,
IdZ(n) = n. For every n,m, n ≤ m,

n

m

≤
ϵ

=⇒
f(ι(n)) n

f(ι(m)) m

f(ι(≤))

ϵr,n

≤
ϵr,m

We have the condition that if we inject n into R, its left adjoint will be such that
f(ι(n)) ≤ n, f(ι(m)) ≤ m and f(ι(n)) ≤ f(ι(m)). If we take the case m = n+1
and ignoring the injection ι for now, this means that f(n) ≤ f(n + 1) ≤ n + 1
and f(n) ≤ n. As f(n) ≤ n+ 1 cannot be equal to n+ 1, f(n) can only be equal
to n or smaller. If we pick the case n−1 ≤ n instead, the natural transformation
implies f(n − 1) ≤ f(n) ≤ n and f(n − 1) ≤ n − 1 ≤ n, so that f(n − 1) < n
and
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Triangle identities : for any n ∈ Z,

Idι(n) = ι(ϵl,n) ◦ ηl,ι(n) (3.106)

The components of this natural transformations give us that, if we transform
our integer n to a real and back,

x

y

≤
η

=⇒
x ι(f(x))

y ι(f(y))

≤

ηl,x

ι(f(≤))
ηl,y

ϵ
=⇒

Different definitions of adjunction

Adjoint functors : For two functors F : C→ D, G : D→ C, the functors form
an adjoint pair F ⊣ G, F the left adjoint of G and G the right adjoint of F , if
there exists two natural transformations, η and ϵ

η : IdC → G ◦ F (3.107)

ϵ : F ◦G → IdD (3.108)

obeying the triangle equalities

F F

FGF

IdF

Fη ϵF

Adjunct : for an adjunction of functors (L ⊣ R) : C↔ D, there exists a natural
isomorphism

HomC(LX, Y ) ∼= HomD(X,RY ) (3.109)

Two morphisms f : LX → Y and g : X → RY identified in this isomorphism
are adjunct. g is the right adjunct of f , f is the left adjunt of g.

g = f ♯, f = g♭ (3.110)

Adjunction for vector spaces

Galois connection
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3.14 Grothendieck construction

3.15 Reflexive subcategories

Given two categories C, D, C is a reflexive subcategory of D if it is a full
subcategory, C ↪→ D, ie every morphism of C is a morphism of D, and such
that every object d ∈ Obj(D) and morphism (f : d → d′) ∈ Mor(D) have a
reflection in C.

Def : The inclusion functor ι : C ↪→ D has a left adjoint T , the reflector :

(T ⊣ ι) : C
ι
↪→ D (3.111)

T is the reflector

[...]

Examples : Ab ↪→ Grp, reflection is the abelianization

Example 81 The category of metric spaces with isometries as morphisms has
as a full subcategory the category of complete metric spaces. The reflector asso-
ciates the completion of the metric space to any metric space.

3.16 Monads

Definition 82 A monad is a category C with

• An object A ∈ C

• An endomorphism t : A→ A

• A natural transformation η : IdA → t

• A natural transformation µ : t ◦ t→ t

Monads from adjunctions

Kleisli category

Algebra over a monad

Definition 83 For a monad (T, η, µ) on a category C, a T -algebra is a pair
(X, f) of an object X ∈ C and a morphism f : TX → X making the following
diagrams commute :
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Example 84 The basic adjoint modality example is the even/odd modality
pair,

Even ⊣ Odd (3.112)

This is done on the category of integers as an ordered set, (Z,≤), for which
the morphisms are the order relations, and endofunctors are order-preserving
functions.

The functor we consider here is the largest integer which is smaller to n/2 :

⌊−/2⌋ : (Z,≤) → (Z,≤) (3.113)

n 7→ ⌊n/2⌋ (3.114)

This functor has a left and right adjoint functor,

even : (Z,≤) ↪→ (Z,≤) (3.115)

n 7→ 2n (3.116)

odd : (Z,≤) ↪→ (Z,≤) (3.117)

n 7→ 2n+ 1 (3.118)

(3.119)

Proof :

⌊−/2⌋ has as a domain the whole category

For a total order, the hom-set Hom(X,Y ) is simply empty if X > Y and has a
single element otherwise. For ⌊−/2⌋, the hom-set

The left adjoint of ⌊−/2⌋ is a functor such that

HomZ(L(−),−) ∼= HomZ(−, ⌊−/2⌋) (3.120)

In the case of a total order, the isomorphism simply means that both sets have
the same cardinality, ie they either have no elements (the two objects are not
ordered) or one (the two objects are ordered). So

HomZ(L(n),m) ∼= HomZ(n, ⌊m/2⌋)b⇔ L(n) ≤ m↔ n ≤ ⌊m/2⌋ (3.121)

If we have L(n) = 2n, we need to show this equivalence both ways.

If 2n ≤ m, then dividing by 2, we have n ≤ m/2, which we can then apply the
floor to both sides (it is monotonous), so ⌊n⌋ ≤ ⌊m/2⌋. As n is an integer,
n ≤ ⌊m/2⌋
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Converse : If n ≤ ⌊m/2⌋ : From properties of floor :

n ≤ ⌊m
2
⌋ ↔ 2 ≤ ⌈m⌉

n
(3.122)

As m is an integer, 2n ≤ m.

So the even function is indeed left adjoint.

Odd function is right adjoint :

From these three functions, we can define adjoint monads :

(Even ⊢ Odd) (3.123)

which send numbers to their half floor and then to their corresponding even and
odd number :

Even(n) = 2⌊n/2⌋ (3.124)

Odd(n) = 2⌊n/2⌋+ 1 (3.125)

n Even(n) Odd(n)

-2 -2 -1
-1 -2 -1
0 0 1
1 0 1
2 2 3
3 2 3

Table 3.1: Caption

Monad and comonad, unit and counit, multiplication

Example 85 Integrality modality : Given the two total order categories (Z,≤)
and (R,≤), the inclusion functor

ι : (Z,≤) ↪→ (R,≤) (3.126)

n 7→ n (as a real number) (3.127)

Left and right adjoints :

An important class of monads are the ones which are associated (in the inter-
nal logic of the category, cf. [X]) to the classical modalities, ie necessity and
possibility.

Kripke semantics
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Example 86 Necessity/Possibility modalities

3.17 Linear and distributive categories



Chapter 4

Spaces

One of the main type of category we will use for objective logic are categories
which are spaces or relate to spaces, in a broad sense, such as frames, sheaves
and toposes.

4.1 General notions of a space

Before looking into how spaces work in category theory, let’s first look at how
spaces are treated both intuitively, in philosophical analysis, and the most com-
mon ways to treat spaces in mathematics.

4.1.1 Mereology

One important aspect of a space in philosophical terms is that of mereology.
The mereology of a space is the study of its parts, where we can decompose a
space into regions with some specific properties. A space X is composed of a
collection of regions {Ui}, which are ordered by a relation of inclusion ({Ui},⊆),
called parthood, which obeys the usual partial order relations :

• Reflexion :

U ⊆ U

• Symmetry :

U1 ⊆ U2 ∧ U2 ⊆ U1 → U1 = U2

• Transitivity :

U1 ⊆ U2 ∧ U2 ⊆ U3 → U1 ⊆ U3

41



42 CHAPTER 4. SPACES

Those are the typical notion of a partial order : reflexivity (a region is part
of itself), antisymmetry (if a region is part of another, and the other region is
part of the first, they are the same region) and transitivity (if a region is part
of another region, itself part of a third region, the first is part of the third).
The antisymmetry allows us to define equality in terms of parthood, simply as
U1 = U2 ↔ U1 ⊆ U2 ∧ U2 ⊆ U1.

We also have the proper parthood relation ⊂, which is defined simply as parthood
excluding equality :

U1 ⊂ U2 ↔ U1 ⊆ U2 ∧ U1 ̸= U2 (4.1)

Other relations we can define are proper extension, underlap, disjointness, in-
discernibility ,

Definition 87 The overlap of two regions is the existence of a third region
which is a part of both :

U1 ◦ U2 ↔ ∃U3, [U3 ⊆ U1 ∧ U3 ⊆ U1] (4.2)

Unless a mereological nihilist, we also typically define an operation to turn
several regions into one, the fusion :

Definition 88 Given a set of regions {Ui}i∈I , we say that U is the fusion of
those region,

∑
(U, {Ui}),

Mereologies can vary quite a lot depending on what you wish to model or your
own philosophical bent. Mereological nihilism will assume for instance that there
are no objects with proper parts (so U1 ⊆ U2 implies U1 = U2), and we can only
consider a collection of atomic points with no greater structure (in particular,
there is no space itself which is the collection of all its regions), while on the other
end of the spectrum is monism (such as espoused by Parmenides[1]), where the
only region is the whole space itself, with no subregion.

Typically however, we tend to consider some specific base axioms for a mereol-
ogy. Beyond the partial ordering axioms (M1 to M3), we also have

• M4 - Weak supplementation : if U1 is a proper part of U2, there’s a third
region U3 which is part of U2 but does not overlap with U1 : U1 ⊂ U2 →
∃U3, [U3 ⊆ U2 ∧ ¬U3 ◦ U1]

Systems[27, 28] : mereology M, minimal mereology MM, extensional mereology
EM, classical extensional mereology CEM, general mereology GM, general
extensional mereology GEM, atomic general extensional mereology AGEM
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In terms of categories, the various formalizations of mereology are expressed by
different types of algebraic structures on posets. M is simply a poset with no
extra structure.

The TOP axiom corresponds to the existence of a greatest element in this partial
order (if we consider this applying to spaces, this is the object X of the space
itself), BOTTOM to a least element (the empty set).

Most axiomatizations of mereology do not include the bottom element, but we
will keep it for a better analogy with spaces in terms of a category, as they
typically include one.

4.1.2 Topology

A common approach for space in mathematics is the notion of topology. We
have already briefly defined the category Top of topological spaces, but as they
form the basis for most of the common understanding of spaces in math, we
should look into them more deeply : what their motivations are, what they are
for, and how they may relate to other objects.

If we look at one of the common structuration of mathematics, popularized by
Bourbaki[ref on structuralism], spaces are built first as sets, then as topological
spaces, and they may afterward get further specified into other structures, such
as metric spaces, etc.

This is only a convention, as there are many other structures one may choose,
that can be easier, more general, more specific to a given property, etc. The
point of topological spaces is that they are a good compromise between those
constraints, being fairly easy to define and allowing to talk about quite a lot of
properties.

First, let’s look at the basic structure of sets. From the perspective of mereology,
sets are a rather specific choice of structure, corresponding to an atomic un-
bounded relatively complemented distributive lattice 1, [see definition of points
in philosophy too etc]

Historically, the notion that spaces are made of point is quite ancient [cf. Sextus
Empiricus], but it has not had the modern popularity it now has until the works
of [Riemann?] Cantor, Hausdorff, Poincaré, etc, and the notion was put into
the modern mathematical canon with such works as Bourbaki, etc.

If we consider spaces only as sets however, the informations we can derive from
them is rather limited. This is an observation from antiquity [Sextus again]

In modern terms, we can talk about subsets, cardinalities, overlap and unions,
but we would be missing on quite a lot of intuitively important properties of
a space. If we consider physical space as our example, as we’ve seen from
mereology, some points seem to ”belong together” more than other points, some
may be ”next to” a give subset even if they do not belong to it, two subsets
may ”touch” without any overlap, and so on.

https://jdh.hamkins.org/set-theoretic-mereology/
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To illustrate those notions, we can consider some subsets of the plane. If we
compare let’s say some kind of continuous shape, a disk and an uncountable set
of points sprinkled in an area (for instance the two-dimensional Cantor dust),

Figure 4.1: Three subsets of the plane of identical cardinality

We would expect the first two objects to have more in common than with the
third, having what we will later call the same shape, but as sets, they are
all isomorphic, simply by the virtue of containing the same amount of points.
The same goes for comparing one connected shape and one composed of two
disconnected shapes

[...]

If we consider the set D of all points that are at a distance strictly inferior to a
given value r from a central point o, we would like to say that a point at exactly
a distance of r is somehow closer to D than other points, but as a set, this point
is simply equivalent to every point outside of D, as D ∩ {p} = ∅.

Convergence

quasitopological spaces, approach spaces, convergence spaces, uniformity spaces,
nearness spaces, filter spaces, epitopological spaces, Kelley spaces, compact
Hausdorff spaces, δ-generated spaces Cohesion, pretopology, proximity spaces,
convergence spaces, cauchy spaces, frames, locales

Approaches via open/closed sets, closure operators, interior operators, exterior
operators, boundary operators, derived sets

Definition 89 Given a set X, a net on X is a directed set (A,≤) and a map
ν : A→ X

Example 90 A sequence is a net with directed set (N,≤)
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Example 91 Net of neighbourhoods

Definition 92 A net is said to converge to an element x ∈ X

Definition 93 A filter

4.2 Frames and locales

All those notions of mereology and topology can be formalized within the context
of category theory using the notion of frames and locales.

As we’ve seen, any formalization of a space can be at least formalized as a poset
ordered by inclusion, already a category. All further notions relating to spaces
will therefore be extra structures on posets, typically relating to their limits.

First we need to define the notion of semilattices for joins and meets.

Definition 94 A meet-semilattice is a poset (S,≤) with a meet operation ∧
corresponding to the greatest lower bound of two elements (which is assumed to
always exist in a meet-semilattice) :

m = a ∧ b↔ m ≤ a ∧m ≤ b ∧ (∀w ∈ S, w ≤ a ∧ w ≤ b→ w ≤ m) (4.3)

Example 95 In Z and R (in fact for any total order), the meet of two numbers
is the min function :

k1 ∧ k2 =∈ (k1, k2) (4.4)

Theorem 96 In a poset category, the meet is the coproduct.

Example 97 In the partial order defined by the power set of a set, the meet is
the intersection of two sets.

Definition 98 A join-semilattice is a poset (S,≤) with a join operation ∨ cor-
responding to the least upper bound of two elements (which is assumed to always
exist in a join-semilattice) :

m = a ∨ b↔ a ≤ m ∧ b ≤ m ∧ (∀w ∈ S, a ≤ w ∧ b ≤ w → m ≤ w) (4.5)

Theorem 99 In a poset category, the join is the product.

Proof 8 Product :
∏
i ai

Natural transformation (by components) :
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ηX :
∏
i

ai → ai (4.6)

There is one morphism from the join to each element, therefore
∏
i ai ≤ ai

Upper bound is least : for any other b such that b ≤ ai (ie the natural trans-
formation αb : b → ai for some ai), then the unique morphism f : b →

∏
ai (b

smaller than ai)

Properties :

Proposition 100 The meet is commutative : a ∧ b = b ∧ a.

Proof 9 As the roles of a and b in the definition of the meet are entirely sym-
metrical, due to the commutativity of the logical conjunction, this is true.

Proposition 101 The meet is associative : a ∧ (b ∧ c) = (a ∧ b) ∧ c

Proof 10 If m = b ∧ c, then a ∧ (b ∧ c) = a ∧m, meaning that the meet can be
defined by some element m′ such that

(m′ ≤ a) ∧ (m′ ≤ m) ∧ (m ≤ b) ∧ (m ≤ c) (4.7)

∧ (∀w ∈ S, w ≤ b ∧ w ≤ c→ w ≤ m) (4.8)

∧ (∀w′ ∈ S, w′ ≤ a ∧ w ≤ m→ w ≤ m′) (4.9)

as (m′ ≤ m) ∧ (m ≤ b)

Definition 102 A lattice is a poset that is both a meet and join semilattice,
such that ∧ and ∨ obey the absorption law

a (4.10)

Definition 103 A Heyting algebra is a bounded lattice

A common poset structure that we will use is the algebra generated by a family
of subsets. If we have a set X, and a family of subsets B ⊆ P(X), B forms
a poset by the inclusion relation ordering, (B,⊆). Some common families of
subsets of interest are the power set P(X), and more generally the set of opens
Op(X) for a given topology.

It is a directed set with X the top element

In this context, the meet is the intersection

Theorem 104 The intersection of two sets is their meet.
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Proof 11 As the intersection of A and B is defined via

A ∩B = {x|x ∈ A ∧ x ∈ B} (4.11)

We can

We already know that A ∩ B ⊆ A,B. If we assume a set C ̸= A ∩ B such that
A ∩ B ⊆ C and C ⊆ A,B, this means that C contains all the same elements
as A ∩ B with some additional elements (since A ∩ B is a subset, we have
C = (A ∩ B) ∪ (A ∩ B)C , and as they are different, (A ∩ B)C ̸= ∅). However,
as C is a subset of A and B, that complement can only contains elements of A
and B

Theorem 105 The union of two sets is their join.

Proof 12 As the union of A and B is defined via

A ∪B = {x|x ∈ A ∨ x ∈ B} (4.12)

A family of sets is therefore a meet semilattice if it is closed under intersection,
and a join semilattice if it is closed under union. If it is both, it is automatically
a lattice as the absorption laws are obeyed by union and intersection.

[proof]

If the empty set is furthermore included, it is a bounded lattice, with 1 = X,
0 = ∅

Semi-lattice, lattice, Heyting algebra, frame (complete Heyting algebra)

Definition 106 A Heyting algebra H is a bounded lattice for which any pair
of elements a, b ∈ H has a greatest element x, denoted a→ b, such that

a ∧ x ≤ b (4.13)

Definition 107 The pseudo-complement of an element a of a Heyting algebra
is

¬a = (a→ 0) (4.14)

Example 108 A bounded total order 0 → 1 → . . . → n is a Heyting algebra
given by

a→ b =

{
n a ≤ b
b a > b

(4.15)

The pseudo-complement is therefore just ¬a = 0.
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Example 109 For the power set P(X) poset, the relative pseudo-complement
of two sets A,B is

C = (X \A) ∪B (4.16)

This follows the property as A ∩ C = A ∩ (B \A)C

(eq. to the discrete topology)

Definition 110 A Heyting algebra is complete if

Definition 111 A frame O is a poset that has all small coproducts (called joints
∨) and all finite limits (called meets ∧), and satisfied the distribution law

x ∧ (
∨
i

yi) ≤
∨

(x ∧ yi) (4.17)

Frames define a mereology by considering its objects as regions, its poset struc-
ture by the parthood relation, and joins and meets by

Mereological axiom for distribution law?

Category of frames : Frm

Dual category : the locales Frmop = Locale

Definition 112 A boolean algebra a ∧ ¬a = 0

Example 113 A power set is a boolean algebra

The basic example of a frame in math is that of the frame of opens for a
topological space (X, τ).

Example 114 The category of open sets of a topological space X, Op(X), is a
frame.

Proof 13 If we consider the poset of opens, as a union and intersection of open
sets is itself an open set, we have a lattice, which is bounded by X itself and the
empty set ∅.

The frame of open is not boolean typically, as the negation ¬ can be defined as
¬a→ 0, and the implication

U → V =
⋃
{W ∈ Op(X)|U ∩W ⊆ V } (4.18)

= (U c ∪ V )◦ (4.19)
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¬U = (U c ∪∅)◦ (4.20)

= (U c)◦ (4.21)

= X \ cl(U ∩X) (4.22)

= X \ cl(U) (4.23)

The interior of the complement

U ∪ (X \ U)◦ = (X ∪ U) \ (cl(U) \ U) (4.24)

= X \ ∂U (4.25)

(4.26)

Therefore a frame of open is boolean if open sets never have a boundary, which
is that every open set is a clopen set.

Stone theorem

Theorem 115 The category Sob of sober topological spaces with continuous
functions and the category SFrm of spatial frames are dual to each other.

Examples :

Example 116 For a given set X, the partial order defined by inclusion of the
power set P(X), is a complete atomic Boolean algebra.

Sober space

4.2.1 Sublocales

Moore closure

double negation sublocale

Consider the map

¬¬ : L → L (4.27)

U 7→ ¬¬U (4.28)

A nucleus on L (a frame) is a function j : L→ L which is monotone (j(a∧ b) =
j(a) ∧ j(b)), inflationary (a ≤ j(a)) and j(j(a)) ≤ j(a)

A meet-preserving monad.

Properties :
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• j(⊤) = ⊤

• j(a) ≤ j(b) if a ≤ b

• j(j(a)) = j(a)

Quotient frames : L/j is the subset of L of j-closed elements of L (such that
j(a) = a).

Double negation sublocale :

4.3 Coverage and sieves

To define a space in categorical terms, we need to have some formalization of an
equivalent notion to mereology, open sets, frames or such that we saw earlier.
The notion of coverage that we will see will be more general than that (in
particular not necessarily be about subregions) but contain those as a special
case.

[define cover/covering family first?]

Definition 117 Given an object X in a category C, a coverage J is a collection
of morphisms to that object indexed by some indexing set I,

J = {Ui → X}i∈I (4.29)

such that morphisms between two objects of C induce a coverage. For g : Y →
X, there exists a covering family {hj : Vj → Y }j∈J such that ghj factors through
fi for some i :

Vj Ui

Y X

k

hj fi

g

If we take the case of topology that we’ve seen as an example, we define the
standard coverage of a space X to be the collection of all families of open subsets
that cover it, ie

J(X) = {{Ui → X} | Ui ⊆ X,
⋃
i

Ui = X} (4.30)

Its stability under pullback corresponds to the fact that for any continuous
function f : Y → X, as the pre-image of any open set is itself an open set, we
can define a family
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{f−1(Ui)→ Y } (4.31)

and as any point in X is covered by some Ui, any point in Y will similarly be
covered by f−1(Ui), obeying the properties of a coverage.

”Another perspective on a coverage is that the covering families are “postulated
well-behaved quotients.” That is, saying that {fi : Ui → U}i∈I is a covering
family means that we want to think of U as a well-behaved quotient (i.e. colimit)
of the Ui. Here “well-behaved” means primarily “stable under pullback.” In
general, U may or may not actually be a colimit of the Ui; if it always is we
call the site subcanonical. ” To define spaces in the mathematical sense of the
word, we need to have some sort of equivalent definition of a topology.

If C has pullback : the family of pullbacks {g∗(fi) : g∗Ui → V } is a covering
family of V .

Grothendieck topology :

An important class of coverage is the Grothendieck topology

Cech nerve

Sieve

Definition 118 For a covering family {fi : Ui → U} in a coverage J , its sieve
is the coequalizer ⊔

j,k

j(Uj)×j(U) j(Uk)⇒
⊔
i

j(Ui)→ S({Ui}) (4.32)

with j the Yoneda embedding j : C ↪→ Psh(C)

Other definition : A sieve S : Cop → Set on X ∈ C is a subfunctor of
HomC(−, X)

Objects S(Y ) are a collection of morphisms Y → X, and for any morphism
f : Y → Z, S(f)

Pullback by a sieve :

Ordering : S ⊆ S′ if ∀X, S(X) ⊆ S′(X)

Category of sieves is a partial order, with intersection and union, it is a complete
lattice

Grothendieck topology : covering sieves
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4.3.1 Cech nerves

Given a covering sieve {Ui → X} with respect to a coverage,

C(U) =

(
· · ·U ×X U ×X U

−→
−→−→ U ×X U

−→−→ U

)
(4.33)

4.4 Subobject classifier

In a category C with finite limits, a subobject classfier is an object Ω (the object
of truth values) and a monomorphism

⊤ : ∗ → Ω (4.34)

from the terminal object ∗, such that for every monomorphism [inclusion map]
ι : U ↪→ X, there is a unique morphism χU : X → Ω such that there is a
pullback of ∗ → Ω← X

U ∗

X Ω

!U

ι ⊤
χU

ie this diagram commutes and is universal, in the sense that for any other
subobject V of X, with ιV : V → X, the following diagram only commutes if V
is itself a subobject of U :

V

U ∗

X Ω

!V

ιV

β

ιU

!U

⊤

χU

ie that V has the same type of valuation in Ω as U through the characteristic
function χU . This is best exemplified by the simple case for sets :

Example 119 In Set, Ω is the set containing the initial object, Ω = {∅, {•}},
also noted as 2 = {0, 1}.
For a subset S ⊆ X with an inclusion map ι : S ↪→ X, the characteristic
function χS : X → 2 is the function defined by χS(x) = 1 for x ∈ S and
χS(x) = 0 otherwise. The truth function simply maps ∗ to 1 in Ω.
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∀x ∈ U, χU (ιU (x)) = 1 (4.35)

And conversely, if we look at another subobject V ⊆ X, the pullback works out

∀x ∈ V, χU (ιU (x)) = 1 (4.36)

only if V ⊆ U , ie there exists a monomorphism from V → U

Subobject classifiers can be more complex than the simple boolean domain
true/false. A good illustration of this is the subobject classifier in the category
of graphs[29]. A graph is composed by two sets, those of nodes N and of arrows
A, with two functions s, t for the source and target of each arrow.

0N N0A
t

A

For a subgraph ι : S ↪→ G, the classifying map χS has the following behaviour :

• If a node in G is not in S, it is mapped to 0N .

• If a node in G is in S, it is mapped to N .

Subobject classifier for a topological space

4.4.1 In a sheaf topos

Given the sheaf topos H = Sh(C, J), there is a natural subobject classifier

4.5 Elements

One of the important difference between set theory and category theory is that
while sets are typically composed of elements, as defined by the ∈ relation,
categories (for which the objects are often somewhat similar to sets themselves)
do not seem to have a naturally equivalent notion.

If we wish to define elements of a set in terms of the morphisms of sets (func-
tions), this is best done via the use of functions from the singleton set {•}, as
those functions are in bijection with the elements of a set

Fun({•}, X) ∼= X (4.37)
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As functions from the singleton are all of the form {(•, x)} for every x ∈ X
(From the properties of the Cartesian product)

Generalized elements : Given the yoneda embedding Y : C ↪→ [Cop,Set], the
representable functor

GenEl(X) : Cop → Set (4.38)

Sends each object U of C to the set of generalized elements of X at stage U .

For an object X ∈ Obj(C), its global elements are morphisms x : 1→ X. It’s a
generalized element at stage of definition 1.

Definition 120 An object S ∈ C is a separator if for every pair of morphisms
f : X → Y , and every morphism e : S → X, then f ◦ e = g ◦ e implies f = g.

In other words, the global elements generated by the separator are enough to
entirely define the morphisms. For instance, in the case of Set, {•} is a separa-
tor, essentially saying that the elements of a set entirely define its functions : a
function f : X → Y is defined by its value f(x) for every x ∈ X.

If we have a topos E such that its terminal object 1 is a separator, and 1 ̸= 0,
we say that the topos is well-pointed, meaning that

Other definitions : global section functor is faithful

Prop : well-pointed topos are boolean, its subobject classifier is two-valued,

Definition 121 A concrete category C is such that there exists a faithful func-
tor F

F : C→ Set (4.39)

What the faithful functor implies

[Concrete categories and well-pointed ones do not imply each other in any di-
rection, depends on if elements are global elements?]

Given a set-valued functor F : C→ Set, its category of elements

Category of elements

The elements of an object in a category are not necessarily best modeled by
global elements, however. The archetypical example of this being the category
of vector spaces Vec, for which the terminal object, being a zero object, only has
one possible morphism to any other object, giving them only a single ”point” if
we try to go with that kind of element. The better choice here would be k, the
field of the vector space and tensor unit, as the maps k → V are isomorphic to
V itself as sets.

This is commonly the case in monoidal categories, such as Hilb
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[...]

What is the relation of global elements wrt the subobject classifier?

4.5.1 Points

As we have seen, we can represent a general notion of space as that of a frame,
but a more contentious issue is how to define points in a space. This is an issue
that goes back all the way to the foundation of geometry [30], and to this day
is not an uncontentious one, as the assumption of point-like structures in space
is still a thorny issue.

Categories for which we have fairly simple notions of discrete elements such
as finite sets do not have too much trouble defining what a point could be,
corresponding in some sense to the notion of discrete objects that were used
uncontroversially in antiquity, but given a frame like that of continuous physical
space, this becomes a more complex notion to define, as there is no internal
notion of what a point is in the context of the frame of opens O(X).

In the abstract, we can define a point just as we would define an element for
another category, simply as morphisms from some terminal object to the regions
of space, but we are neither guaranteed the existence of such an object nor that
the space is in some sense composed by those points rather than just those
merely inhabiting it.

The intuitive notion, going back at least as far as [30], would be to consider
a point as the limit of a shrinking family of open sets, but we could have for
instance a family of regions {Ui} which converge to another (non-point like)
region, such as a family of disks of radius rn = 1 + 2−n. Furthermore, two
different such sequences can converge to the same point so that we also need to
be able to define the equivalence of such sequences.

To represent the notion of several sequences of regions converging to the same
result, we need to use the notion of filter

A subset F of a poset L is called a filter if it is upward-closed and downward-
directed; that is:

If A ≤ B in L and A ∈ F , then B ∈ F ; for some A in L, A ∈ F ; if A ∈ F and
B ∈ F , then for some C ∈ F , C ≤ A and C ≤ B.

Points given a locale?

Given a locale X, a concrete point of X a completely prime filter on O(X).
[Show equivalence with a continuous map f : 1→ X : treat f∗ : O(X)→ O(1)
as a characteristic function]

Completely prime filter :

A filter F is prime if ⊥ /∈ F and if x ∨ y ∈ F , then x ∈ F and y ∈ F . For every
finite index set I, xk ∈ F for some k whenever

∨
i∈I xi ∈ F .
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[Some descent of open sets for a topological space?]

4.6 Internal hom

One component of the definition of a topos regards the behaviour of its internal
homs, which are a way with which to include the hom-set of the category in its
objects. In other words, every space of morphisms between two objects of the
topos is itself an object of the topos.

Definition 122 In a symmetric monoidal category (C,⊗, I), an internal hom
is a bifunctor

[−,−] : Cop ×C→ C (4.40)

such that for any object X ∈ C, the functor [X,−] is right adjoint to the functor
(−)⊗X :

((−)⊗X) ⊣ [X,−]) : C→ C (4.41)

As an adjunction, we have two natural transformations

η : IdC → [X, ((−)⊗X)] (4.42)

ϵ : ([X,−]⊗X) → IdC (4.43)

The simplest definition of the internal hom is via the adjunction of hom sets :

HomC(Y ⊗X,Z) ∼= HomC(Z, [X,Y ]) (4.44)

If we have a morphism Y ⊗ X → Z, there is equivalently some morphism
Z → [X,Y ]

Example : take Z = [X,Y ], take the morphism Id[X,Y ] : [X,Y ] → [X,Y ]. Its
adjunct is

Y ⊗X → [X,Y ] (4.45)

Evaluation map :

Internal hom bifunctor

Adjunction −×A ⊣ (−)A
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4.7 Presheaves

Definition 123 A presheaf on a small category C is a functor F

F : Cop → Set (4.46)

This definition also generalizes to any category. If we replace Set with any
category S, we speak of an S-valued presheaf, defined as

F : Cop → S (4.47)

In a similar manner, we have the dual of presheaves, called copresheaves, and
defined as sheaves on the opposite category :

F : C→ Set (4.48)

And similarly, for an S-valued copresheaf,

F : C→ S (4.49)

Fundamentally, any functor can be described as a (co)presheaf, as any functor
from a category C (or its opposite) fits the definition, but a presheaf is typically
gonna be studied with more specific goals in mind, ie to turn them into sheaves
or topos.

An example for the motivation of (co)presheaves is to consider a topological
space (X, τ). The category of interest here is the frame of opens Op(X). A
sheaf on the frame of open is some functor associating a set to every open set :

∀U ∈ Op(X), F (U) = A ∈ Set (4.50)

In a way that preserves the functions in some sense. In particular, if we have
an inclusion ι : U ↪→ U ′, its opposite is ιop : U ′ → U , and the functor maps it
to

F (ιop) : F (U ′)→ F (U) (4.51)

We will see in the section on sheaves the meaning of this construction.

Example 124 An S-valued presheaf on C is a constant presheaf if it is a
constant functor, ie for some element X ∈ S, the presheaf is just

∆X : Cop → S (4.52)

interpretation of presheaves X(U) as a function U to X via Yoneda
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4.7.1 Simplexes

A basic example of presheaves is the simplexes, which are a presheaf over the
simplex category.

X : ∆op → Set (4.53)

By the Yoneda embedding [representable presheaves etc], any object in the
simplex category is a simplex. Furthermore, we can consider simplexes which
are constructed from the combination of different simplexes

Example : the triangle. Take the two simplexes 2⃗, 1⃗

4.8 Sheaves

The more important construction based on (co)presheaves is that of (co)sheaves,
which are (co)presheaves with some additional conditions, meant to signify the
spatial nature of the construction : the category corresponds in some sense to
the piecing together of regions.

[...]

Consider the Yoneda embedding of C :

j : C ↪→ Psh(C) (4.54)

Definition 125 Given a presheaf F : Cop → Set, and given a coverage J of
C, F is a sheaf with respect to J if

• for every covering family {pi : Ui → U}i∈I in J

• for every compatible family of elements (si ∈ F (Ui))i∈I ,

there is a unique element s ∈ F (U) such that F (pi)(s) = si for all i ∈ I.

If we consider the case where a covering family is composed of monomorphisms
with subobjects (assuming the equivalence something something), then pi :
Ui ↪→ U can be considered [something], and the morphism generated by the
sheaf is understood to be a restriction : F (pi)(s) = si, we are restricting the
section s on U to the subobject on Ui.

[The section of a sheaf is defined by its local elements]

The easiest example of this is to pick once again a presheaf on the frame of open
F ∈ Psh(Op(X)), and as the coverage, pick the subcanonical coverage. For any
open set U ⊆ X, a subcanonical coverage is a family of open sets {Ui} such that
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⋃
i

Ui = U (4.55)

[...]

A nice class of such sheaves are the sheaves given by function spaces over the
appropriate sets, sheaves of functions.

Example 126 For an S-valued sheaf on (C, J), the constant sheaf

Examples with sheaves on frames of opens

For Op(X) with the canonical coverage, a presheaf F is a sheaf if for every
complete subcategory U ↪→ Op(X),

F (lim
→
U) ∼= lim

←
F (U) (4.56)

Proof 14 Complete full subcategory is a collection {ιi : Ui ↪→ X} closed under
intersection. The colimit

lim
→

(U ↪→ Op(X)) ∼=
⋃
i

Ui (4.57)

is the union of these open subsets. By construction,

Empty sheaf, unit sheaf

4.9 Topos

One important type of categories that will be the main focus of study here is
that of a topos. There are many possible definitions and intuitions of what a
topos is, many of them listed in [31], but for our purpose, a topos will mostly
be about

• A universe of types in which to do mathematics

• A category of spaces

• A categorification of some types of logics

There are a few different nuances to what a topos can be, but the most general
case we will look at for now (disregarding things such as higher topoi) is that
of an elementary topos.
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Definition 127 An elementary topos H is a category which has all finite limits,
is Cartesian closed, and has a subobject classifier.

An elementary topos’ definition fits best in the first sense of the definitions, in
that it is a universe in which to do mathematics. These properties are overall
modeled over Set, and in some sense it is the generalization of a set. As we will
see [], Set itself is a topos.

Its use as a mathematical universe is given by its closure under limits (and as we
will show, colimits) and exponentiation. We can easily talk about any (finite)
construction of objects in a topos, as well as any function between two elements
of a topos, without leaving the topos itself, and the subobject classifier [...]

Theorem 128 An elementary topos has all finite colimits.

Proof 15 Contravariant power set functor :

Ω(−) : Hop → H (4.58)

Properties : locally Cartesian closed, finitely cocomplete, Heyting category,

4.9.1 Grothendieck topos

The most common type of topos, and the one we will typically use, is the
Grothendieck topos.

Definition 129 A Grothendieck topos E on a site C with coverage J is a sheaf
over the site C

E ∼= Sh(C,J ) (4.59)

Proposition 130 A Grothendieck topos is an elementary topos

Proof 16

Example 131 A trivial example of a Grothendieck topos is the initial topos,
which is the sheaf topos over the empty category with the empty topology (which
is the maximal topology on this category), Sh(0). The only element of this topos
is the empty functor, with the identity natural transformation on it (as there is
no possible components to differentiate them on the empty category, this is the
only one). We therefore have

Sh(0) ∼= 1 (4.60)

Its only object ∗ is both the initial and terminal object (therefore a zero object),
its product and coproduct are simply ∗+ ∗ ∼= ∗ and ∗ × ∗ ∼= ∗
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One important nuance in topos theory is that a topos can be considered alterna-
tively as a space in itself, or as a category in which every object is a space. The
former is referred to as a petit topos, while the latter is a gros topos. A typical ex-
ample of this would be for instance the topos of smooth spaces Smooth, which
contains (among other things) all manifolds, as a gros topos, while the topos of
the site of opens on a topological space Sh(Op(X)) would be an example of a
petit topos.

Theorem 132 For any topos H, the slice category given by one of its object
H/X is itself a topos.

This construction allows us to bridge the gros and petit topos, in that given a
space X in a gros topos H, its corresponding petit topos will be H/X .

”Also in 1973 Grothendieck says the objects in any topos should be seen as
espaces etales over the terminal object of the topos, in a generalized sense that
includes saying any orbit of a group action lies “etale” over a fixed point. ”

Subobject classifier of a sheaf topos :

Example 133 In the sheaf topos Set ∼= Sh(1)

Sheaf topos is Cartesian closed, internal hom from this monoidal structure

4.10 Site

A site is roughly speaking the elements from which a (Grothendieck) topos is
stitched together.

A site (C, J) is a category C equipped with a coverage J

Sieve

Example :

Example 134 The terminal category 1 is a site. The covering family is simply
the only function, {Id∗ : ∗ → ∗}. As there are no other objects in the category,
we only need to check the induced coverage on itself. Given the morphism Id∗ :
∗ → ∗, the diagram commutes trivially by using the identity function everywhere.

∗ ∗

∗ ∗

Id∗

Id∗ Id∗

Id∗

Example 135 The category of opens of a topological space is a site
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In particular, Cartesian spaces?

”Every frame is canonically a site, where U is covered by {Ui} precisely if it is
their join.”

Is there some kind of relationship between the sheaves of a Grothendieck topos,
and the elements of the site taken as (representable) sheaves + coproduct and
equalizer

4.10.1 Site morphisms

Site morphism : for C,D sites, a functor f : C → D is a morphism of sites if it is
covering-flat and preserves covering families : for every covering {pi : Ui → U}
of U ∈ C, {f(pi) : f(Ui)→ f(U)} is a covering of f(U) ∈ D.

Covering-flat :

For a set-valued functor F : C → Set,

Filtered category : A filtered category is a category in which every diagrgam
has a cocone.

For any finite category D and functor F : D → C, there exists an object X ∈ C
and a nat. trans. F → ∆X .

Simpler version :

• There exists an object of C (non-empty category)

• For any two objects X,Y ∈ C, there is an object Z and morphisms X → Z
, Y → Z

• For any two parallel morphism, f, g : X → Y , there exists a morphism
h : Y → Z such that hf = hg.

Every category with a terminal object is filtered.

Every category which has finite colimits is filtered.

Interpretation : for any limit that the site has, they are preserved.

4.11 Stalks and étale space

[32]
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4.11.1 In a topological context

In Top, consider an object B (the base space), and take the slice category
Top/B, the category of bundles π : E → B over B.

If π is a local homeomorphism, ie for every e ∈ E, there is an open neighbour-
hood Ue such that π(Ue) is open in B, and the restriction π|Ue

: Ue → π(Ue)
is a homeomorphism, then we say that π : E → B is an etale space, with
Ex = π−1(x) the stalk of π over x.

For Sh(C, J) a topos, if F is a sheaf on (C, J), the slice topos Sh(C, J)/F has a
canonical étale projection π : Sh(C, J)/F → Sh(C, J), a local homeomorphism
of topoi, the étale space of F .

For any object X ∈ C, y(X) the Yoneda embedded object,

U(X) = Sh(C, J)/y(X) (4.61)

Sections of πF over U(X)→ Sh(C, J) are in bijection with elements of F (X).

If (C, J) is the canonical site of a topological space, each slice Sh(C, J)/F is
equivalent to sheaves on the etale space of that sheaf. In particular, U(X) →
Sh(C, J) corresponds to the inclusion of an open subset.

4.12 Topological spaces

While the category of topological spaces Top is not a topos, I feel like I should
bring up some comments on this.

The common notion of a ”space” in mathematics (common as in defined on set
theory) is usually done using that of a topological space, for various reasons
such as history, ease of use, broadness, etc. The common grounding as with the
rest in general is done using set theory as

Definition 136 A topological space (X, τ) is a set X and a set of subsets τ ⊂
P(X), called open sets, such that for any collection of open sets {Ui} ⊆ τ , we
have

• The entire space X and the empty set ∅ are both open sets : X,∅ ∈ τ

•

In terms of category, we have the category of topological spaces Top, with ob-
jects the class of all topological spaces, and morphisms the class of all continuous
functions.

Concrete category
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Limits and colimits

Subobject classifier

Problem with exponential object

Convenient category of topological spaces : subcategory of Top such that

Every CW complex is an object C is Cartesian closed C is complete and co-
complete Optional : C is closed under closed subspaces in Top : if X in C and
A ⊆ X is a closed subspace, then A belongs to C.

4.13 Geometry

The broad notion of ”geometry” in a topos involved the use of so-called ge-
ometric morphisms (although in terms of the topos itself, those are actually
functors)

For two toposes E,F , a geometric morphism f : E → F is a pair of adjoint
functors (f∗, f∗)

f∗ : E → F (4.62)

f∗ : F → E (4.63)

such that the left adjoint f∗ preserves finite limits. f∗ is the direct image functor,
while f∗ is the inverse image functor.

To get a better idea of what a geometric morphism is, let’s look at the more
concrete case of a Grothendieck topos. If the sites are (X,JX), (Y,JY ), with a
morphism of site f : X → Y , inducing a functor by precomposition :

(−) ◦ f : PSh(Y ) → PSh(X) (4.64)

(F : Y op → Set) 7→ (G : Xop → Set) (4.65)

ie for some element y ∈ Y , and a presheaf F , we have the map

F ◦ f : Y → Set (4.66)

Upon restriction to act on sheaves, this is our inverse image functor f∗, with
the right adjoint to this being the direct image functor.

f∗ : Sh(X) → Sh(Y ) (4.67)

f∗ : Sh(Y ) → Sh(X) (4.68)
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Example 137 The basic example which gives the morphisms their names is
the case of a sheaf over a topological space X, where the site is the category of
opens Op(X), and a common type of sheaf is the sheaf of functions to some set
A : Sh(Op(X)) = C(X,A).

[X] (4.69)

A morphism of site in this case is a continuous function f : X → Y , which
induces a functor on Op(X) by restriction :

f(U ∈ Op(X)) = (4.70)

f∗F (U) = F (f−1(U)) (4.71)

Example 138 Another similar example to look at the basic functioning of the
geometric morphisms is to consider two slice topos from the category of sets.
Taking two sets X and Y , consider the slice topoi Set/X and Set/Y .

Example : One of the most common type of geometric morphism on a (Grothendieck)
topos is the case of global sections. The site morphism involved is from whichever
site we decide on our topos X to the trivial site ∗, so that our geometric mor-
phism is between our topos and the topos of sets, Set = Sh(∗). The only site
morphism available here is the constant functor

p : X → ∗ (4.72)

which is a site morphism as any covering family of X is sent to Id∗ : ∗ → ∗,
which is the only covering of 1. As the terminal category does not have much
in the way of limits, we will have to show that this functor is filtered.

The induced functor is therefore some functor from the category of sets to our
topos, so that for any object F : Xop → Set in our topos, and any object x ∈ X
in the site, the precomposition becomes

(−) ◦ p : Set → Sh(X) (4.73)

(A : ∗ → Set) 7→ (A ◦ p : Xop → ∗ → Set) (4.74)

ie for any ”sheaf” ∗ → A (a set), we obtain a sheaf on X simply giving us back
this set.

there is only one morphism between two sites, Id∗ : ∗ → ∗. The induced functor
on the sheaf is

F ◦ Id∗ : ∗ (4.75)
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direct image functor is

x (4.76)

If f∗ has a left adjoint f! : E → F , f is an essential geometric morphism.

Direct image functor :

f∗F (U) = F (f−1(U)) (4.77)

Global section : if p : X → ∗, ∗ the terminal object of the site

Inverse image functor :

f−1G(U) = G(f(U)) (4.78)

Local geometric morphism

4.14 Subtopos

Definition 139 Given a topos H, a subtopos S is a topos for which there exists
a geometric morphism ι : S ↪→ H

Slice topos, over topos, comma topos?

Dense subtopos, Lawvere-Tierney topology j

Level of a topos : an essential subtopos Hl ↪→ H is a level of H.

”the essential subtoposes of a topos, or more generally the essential localizations
of a suitably complete category, form a complete lattice”

”If for two levels H1 ↪→ H2 the second one includes the modal types of the
idempotent comonad of the first one, and if it is minimal with this property,
then Lawvere speaks of “Aufhebung” (see there for details) of the unity of
opposites exhibited by the first one.”

4.15 Motivic yoga

[33, 34] Six functor formalism

[35]
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4.16 Lawvere-Tierney topology

On a topos H, a Lawvere-Tierney topology is given by a morphism j on the
subobject classifier, ie

j : Ω→ Ω (4.79)

Analog of Grothendieck topology for a topos? [32]

First to define a sheaf on a topological space (X, τ) (the category Op(X) with
the canonical coverage). Take a collection C = {Ui}i∈I .

The locality operator j maps C to the open sets covered by C.

j(C) = {U ∈ Op(X)|U ⊆
⋃
i∈I

Ui} (4.80)

Properties :

If U ∈ C, U ∈ j(C)

j(Op(X)) = Op(X)

j(j(C)) = j(C)

j(C1 ∩ C2) ⊆ j(C1) ∩ j(C2)

If C1, C2 are sieves, j(C1 ∩ C2) = j(C1) ∩ j(C2)

If C = S(U), j(C) is also a sieve.

If C is a sieve, it is an element of Ω(U), the subobject classifier on the topos of
presehaves on X.

Generalization : j is a map j : Ω→ Ω on the subobject classifier of a topos, the
Lawvere-Tierney topology, with properties

• j ◦ ⊤ = ⊤

• j ◦ j = j

• j ◦ ∧ = ∧ ◦ (j × j)

j is a modal operator on the truth values Ω.

Example 140 In the Grothendieck topos E = SetOp(X)op of presheaves on X
a topological space, Classifier object U 7→ Ω(U), the set of all sieves S on U , a
set of open subsets V ⊆ U such that W ⊆ V ∈ S implies W ∈ S.
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Each open subset V ⊆ U determines a principal sieve V̂ consisting of all opens
W ⊆ V
The map ⊤U : 1→ Ω(U) is the map that picks the maximal sieve Û on U .

J(U) = {S| S is a sieve on U and S covers U } (4.81)

S covers U means

4.17 Localization

In some cases we wish to

[36] For a category C and a collection of morphisms S ⊆ Mor(C), an object
c ∈ C is S-local if the hom-functor

C(−, c) : Cop → Set (4.82)

sends morphisms in S to isomorphisms in Set, so that for every (s : a→ b) ∈ S,

C(s, c) : C(b, c)→ C(a, c) (4.83)

is a bijection

”localization of a category consists of adding to a category inverse morphisms
for some collection of morphisms, constraining them to become isomorphisms”

”In homotopy theory, for example, there are many examples of mappings that
are invertible up to homotopy; and so large classes of homotopy equivalent
spaces”

Example 141 The basic example of a localization is that of a commutative
ring. localizing with prime 2 : Z[1/2], localization away from all primes : Q

Example 142 Localization of R[x] away from a : rational functions defined
everywhere except at a

Localization at a class of morphisms W : reflective subcategory of W -local
objects (reflective localization).

Localization of an internal hom : localization of the morphisms defined by∏
X,Y [X,Y ]?

Localization of a topos corresponds to a choice of Lawvere topology, localization
of a Grothendieck topos to a Grothendieck topology.

Duality of a localization?
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4.18 Number objects

One benefit of topoi as a category is the guaranteed existence of a natural
number object[37]

Definition 143 A natural number object for a topos is an object denoted N
such that there exists the morphisms

• The morphism z : 1→ N

• The successor morphim s : N→ N

such that for any diagram q : 1→ X, f : A→ A, there is a unique morphism u

1 N N

A A

z

q

s

u u

f

z : zero object(?), successor map : s(n) = n+ 1 = Maybe(n)

f defines a sequence, such that a0 = q and an+1 = f(an)

Relation to maybe monad

Show that a morphism N → A induces a diagram A → A → A → . . ., which
induces a limit

lim
f
A (4.84)

Topos also induce a real number object

4.19 Ringed topos

As with sheaves in general, we do not have to consider our topos to be exclu-
sively set-valued, and we can give it a variety of other types. One of the most
commonly used is that of a ringed topos.

Definition 144 A ringed topos (X,OX) is



70 CHAPTER 4. SPACES



Chapter 5

Example categories

For the consideration of the methods to be studied, we need to look at a few
good examples of appropriate categories. We will mostly look at topos (the
main focus of this), more specifically Grothendieck topos, as well as

All the cool categories we consider here are topos

Quantales? Topos of the sheaves of commutative algebras on Hilbert space?
Effectus categories?

Why Top isn’t a topos : Not balanced, not Cartesian closed or localy Cartesian
closed[38]

Simplicial category? Sierpinski topos?

5.1 Category of sets

The most basic topos (outside of the initial topos Sh(0) ∼= 1) is the category of
sets Set, with objects made from the class of all sets and morphisms the class
of all functions.

In terms of a sheaf topos, sets can be defined as the sheaf on the terminal
category : Set = Sh(1), which is the functor from ∗op = ∗ to Set. As the set of
all functions from {•} to any set X is isomorphic to X itself, this is easily seen
to be isomorphic to Set. We only need to consider sieves on its unique object
∗, and as there is only one possible morphism there, there are only two possible
sieves : the empty sieve S∅ which maps ast to the empty set, and the maximal
sieve S∗ which maps it to the singleton containing the identity map.

This allows us two possible topologies, the chaotic topology

As the site only has a trivial coverage, there is only a fairly limited amount of
assembly that we can do from it.

71
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Also FinSet as a subcategory

5.1.1 Limits and colimits

Theorem 145 The empty set ∅ is the initial object of Set.

Proof 17 We need to show that for any set X ∈ Obj(Set), there is a unique
function f : ∅→ X. A function f : A→ B is a subset of A× B obeying some
properties, therefore we need to look at the set of subsets of ∅×A. By properties
of the Cartesian product,

∅×A = {∅} (5.1)

There is therefore only one element to choose from, ∅, which is indeed a function
since it obeys (vacuously) the constraints on functions.

Theorem 146 Any singleton set {•} is a terminal object of Set, all isomor-
phic.

Proof 18 We need to show that for any set X ∈ Obj(Set), there is a unique
function f : X → {•}.

X × {•} (5.2)

As a category of sets, which are fundamentally defined by ∈, Set has global
elements x : I → X. Those global elements are separators

Well-pointed topos

Products and coproducts :

Theorem 147 The product on Set is isomorphic to the Cartesian product.

Proof 19

Theorem 148 The coproduct on Set is isomorphic to the disjoint union.

Proof 20

Theorem 149 Given two functions f, g : A → B, the equalizer in Set is the
subset C ⊆ A on which those functions coincide,

eq(f, g) = {c ∈ A|f(c) = g(c)} (5.3)

Theorem 150 The equalizer of two functions f, g : A ⇒ B is the set of ele-
ments of A whose image agree :

eq(f, g) = {x ∈ A|f(x) = g(x)} (5.4)
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Theorem 151 The coequalizer of two functions f, g : A ⇒ B is the quotient
set on A by the equivalence relation

x ∼ y ↔ f(x) = f(y) (5.5)

Proof 21

A→ B → C (5.6)

Definition 152 The pullback of the (co?)span A→ C ← B is the indexed set

Theorem 153 The pushout of the (co?)span A← C → B is the

Given these, we can see that Set has all small limits and colimits.

5.1.2 Elements

Fairly obviously, given its status as the model for it, Set has generalized elements
: x : {•} → X, corresponding to the functions

∀x ∈ X, x(•) = x (5.7)

so that explicitely, x = {(•, x)} (this set can be shown to exist with the axiom
of pairing)

5.1.3 Subobject classifier

For Set, the subobject classifier is the set {∅, {•}}, also denoted by {0, 1} or
{⊥,⊤}, corresponding to the two valuations of a subobject : either being a
subset or not being a subset.

For a subset ι : S ↪→ X

S ∗

X Ω

!

ι true

χS

The function χS is more typically called the characteristic function and uses the
notation χS : U → B

χU (x) =

{
0

1
(5.8)
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Internal hom : The set of functions

[X,Y ] = {f |f : X → Y } (5.9)

= {f ⊆ X × Y |∀x ∈ X, ∃y ∈ Y, (x, y) ∈ f ∧ ((x, y) ∈ f ∧ (x, z) ∈ f → y = z)}(5.10)

Natural number object : the natural number construction.

The maybe monad is simply

Maybe(X) = X ⊔ {•} (5.11)

Coproduct for natural number :

0 ⊔ 0 = {} (5.12)

Lawvere-Tierney topology : some morphism j : 2→ 2

Properties : j({•}) = {•}, j(j(x)) = j(x), j(a ∧ b) =

j({•}) = {•} reduces the choice to j = IdΩ and j = {•}, the constant map.

For the identity map : Given a subset ι : S ↪→ X, with classifier χS : A → Ω,
the composition j ◦ χS defines another subobject ι : S ↪→ A such that s is a
subobject of ι, s is the j-closure of s

Identity map closure : every object is its own closure. This is the discrete
topology.

Constant map j(x) = {•} : the composition j ◦ χS is the ”always true” charac-
teristic function, which is just χA. The closure of a set S in A is the entire set
A. This is the trivial or codiscrete topology.

Those are the only two allowed topologies in Set.

Relation to loc¬¬ : ¬ : Ω→ Ω is

¬({•}) = ∅ (5.13)

¬(∅) = {•} (5.14)

¬¬ is simply the identity on Set. The j-closure associated to it is the identity
map.

Localization?
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5.1.4 Closed Cartesian

Internal hom : for any two sets A,B, the hom-set HomSet(A,B) is itself a set,
by the traditional set definition of functions

f : A→ B ↔ f = {(a, b) ⊆ A×B|f(a) = b} (5.15)

The evaluation map of a function in Set is given by the traditional formulation
of function evaluations in set theory. For a function f : A → B, its evaluation
by an element x ∈ A is the unique element y in Y for which (x, y) ∈ Rf . In set
theoretical terms, this can be defined Russell’s iota operator,

ev(x, f) = ιy, xRfy (5.16)

=
⋃
{z | {y | xRfy} = {z}} (5.17)

Counit of the tensor product/internal hom adjunction?

S × (−) ⊣ [S,−] (5.18)

currying

5.2 Topos on a set

As any set forms a site with the power set as coverage, we can consider the
Grothendieck topos

Sh(X,P(X)) (5.19)

for some set X.

5.3 Topos of a topological space

Another common example of a topos is the sheaf of a topological space Sh(Op(X))
with the subcanonical coverage, simply written as Sh(X) for short. This is the
type of topos we originally saw in the definition of a sheaf as an ur-exemple.
If we call our topos E = Sh(X), then we have the interpretation that we saw
earlier.

Restriction maps, gluing, locality

Sh(Op(X))
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5.4 Category of smooth spaces

A more geometric category for a topos is the category of smooth spaces Smooth,
which is defined as the sheaf over the category of smooth Cartesian spaces,

Smooth = Sh(CartSpSmooth) (5.20)

The category of smooth Cartesian spaces is composed of objects from the open
sets of Rn, with morphisms being smooth maps between such objects.

The coverage of this site is slightly tricky. The most obvious cover is simply
the coverage by open sets, where we consider the lattice generated by all open
sets of CartSp. While we can construct a sheaf over this coverage [equivalent
to good open cover?], there are coverages with better properties with what will
follow.

Definition 154 A good open cover is an open cover for which any finite in-
tersection of open sets is contractible, ie a good open cover {fi : Ui → X} of
X ∫ ∏

i∈I, X
Ui ∼= ⋆ (5.21)

Properties with respect to the Cech nerves

This implies a homeomorphism to the open ball

Definition 155 A good open cover {fi : Ui → X} is a differentially good open
cover if finite intersections of the cover are all diffeomorphic to the open ball.∏

i∈I, X
Ui ∼= Bk (5.22)

Theorem 156 All three coverage of CartSpsmooth lead to isomorphic sheaves
:

Sh(CartSpsmooth,Jopen) ∼= Sh(CartSpsmooth,Jgood) ∼= Sh(CartSpsmooth,Jdiff)

Therefore for our purpose we can pick the best behaved coverage.

Sheaves on the category of Cartesian spaces is best understood, in the context
of geometry, as being plots.

Definition 157 A plot is a map between an open set of a Cartesian space
O ⊆ Rn and a topological space X
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From the Yoneda lemma, we have that for any sheafX ∈ Smooth and Cartesian
space U , we have the isomorphism

X(U) ∼= Hom[CartSp,Set](y(U), X) (5.23)

y(U) : CartSpop → Set (5.24)

O 7→ (5.25)

While this is a good intuitive way to understand the spaces probed by plots, it
can be useful to know that in fact the topological space X itself is not necessary
as a data to define a space cattaneo.

Theorem 158 Given the set of transition functions on a manifold, the topo-
logical space can be reconstructed as

M =
⊔
Oi/ ∼ (5.26)

where two points in Oi ⊔Oj are equivalent if τij(xi) = xj

This is what we do with the smooth sets topos, as we are only considering the
existence of those maps (as the set F (Cartsp)), and the behaviour of those
plots over overlapping regions.

Example 159 Take the circle S1, which we will defined a bit simplistically as
a plot over I = (0, 1)

S1(I) = {φ+, φ−} (5.27)

In terms of an atlas, if we considered our circle as the interval [0, 2] with ends
identified, those would be the charts

φ± : [0, 2] → U± ⊂ S1 (5.28)

x 7→ x± 1 (5.29)

Those two coordinate neighbourhood overlap, as

U± = U+ ∩ U− = (0, 1) ∪ (1, 2) (5.30)

with transition functions [...]

In terms of overlap, we have U+ ∩ U− ∼= I ⊔ I, so that we need to consider
additionally the plot of that Cartesian space (slightly complicated by the non-
connected aspect of it, but we can consider the open set of the line (−1, 0)∪(0, 1).
While we can do it this is partly why we generally consider good open covers)

http://user.math.uzh.ch/cattaneo/manifoldsFS15.pdf
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S1(I ⊔ I) = {φ±} (5.31)

which maps this overlap region onto S1. The inclusion of this overlap area is
done as

ι+(x ∈ I ⊔ I) = x (5.32)

ι−(x ∈ I ⊔ I) = 2− x (5.33)

The overlap in terms of the plot is that we map (−1, 0)∪ (0, 1) to the interval I
as

Those morphisms on CartSp are mapped onto opposite mappings on Set :

S1(ι+) : {φ+, φ−} → {φ±} (5.34)

If we take the less abstract case of a concrete sheaf to look at smooth spaces,
considering CartSp is a concrete site, the concrete presheaf of Sh(CartSp) is the
category of diffeological spaces DiffeoSp, where each global element X : 1 →
DiffeoSp is a diffeological space.

[Diff is a quasitopos]

An important subcategory is also the category of smooth manifolds SmoothMan.

SmoothMan ⊆ DiffeoSp ⊆ Smooth (5.35)

SmoothMan is not itself a topos, as it lacks an exponential object (Hom sets
between manifolds are not themselves manifolds, although they are close to it
[39]), and the quotients or equalizers of manifolds are not themselves manifolds
[examples]

Smooth manifolds are locally representable objects of Smooth. If X : 1 →
Smooth is a concrete smooth space (diffeological space), it is locally repre-
sentable if there xists {Ui ↪→ X}, Ui ∈ Smooth such that the canonical mor-
phism out of the coproduct

⊔
i

Ui → X (5.36)

Is an effective epimorphism in Smooth.

⊔
i

Ui ×X
⊔
j

Uj ⇒
⊔
i

Ui → X (5.37)



5.4. CATEGORY OF SMOOTH SPACES 79

By commutativity of coproduct and pullback [prove it]

⊔
i,j

(Ui ×X Uj)⇒
⊔
i

Ui → X (5.38)

Theorem 160
Smooth ∼= Sh(SmoothMan) (5.39)

An important property of Smooth is that it contains a large proportion of Top,
more specifically the category of

Status wrt top, delta generated top, etc

Due to this wide variety of physically important objects in Smooth, it will
typically be (or at least some wider categories that we will define later) the
topos serving as the setting for physics in general.

5.4.1 Limits and colimits

Theorem 161 The initial object of Smooth is the constant functor

∆∅ : CartSpSmooth → Set (5.40)

which maps every cartesian space to the empty set ∅.

Proof 22

The interpretation of this is that the

Theorem 162 The terminal object of Smooth is the constant functor

∆{•} : CartSpSmooth → Set (5.41)

which maps every cartesian space to the singleton {•}.

The interpretation of this is that the terminal object of Smooth is a point, as
in particular the plot of points p : R0 → {•} is the only one which is

Important functors :

Forgetful functor to Set USet : Smooth→ Set

Logic?

5.4.2 Subcategories of smooth sets

Concrete sheaves (diffeological space)

Example 163
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5.4.3 Non-concrete objects

As we’ve seen, the concrete sheaves in Smooth do not form the entire topos,
leaving non-concrete sheaves.

The archetypical example of this is the smooth set of differential k-forms,

Ωk : CartSp → Set (5.42)

U 7→ Ωk(U) (5.43)

which associates to every Cartesian space the set of k-forms over that space.

If we attempt to look at the set of ”points” of this space, if that term can be
applied here, that would be the plot of the terminal object in the site, R0. But
of course, in the sense of the sheaf as described here, this will just be the set
of all k-forms over the point Ω(R0), which will just include the zero section, so
that if we try to consider this plot as the ”point content” of the space, there is
but a single point :

Ω(R0) = {0} (5.44)

As we would not really consider the elements of this space to be that single
section, it is therefore important to be mindful of what the plots of the sheaf
represent.

Global sections :

Γ(Ωk) = HomSmooth(1,Ω) (5.45)

5.4.4 Important objects

The category of smooth spaces contains most of the objects of importance in
physics and other fields, so that it is useful to look at the various types of objects
within it.

First, as a topos, it has a terminal object as we’ve seen (the constant sheaf 1
which maps all probes to a single element, the constant plot). From this and
the coproduct, we can construct objects similar to sets as we wish (this is in
fact what the discrete functor will be later on), and as with any topos, a natural
number object in particular.

As the coverage is subcanonical, the Yoneda embedding makes any Cartesian
space a smooth space via its representable presheaf,

U 7→ HomCartSp(−, U) (5.46)
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As we have seen, any diffeological space is a smooth space, in fact every concrete
smooth space is a diffeological space.

Manifolds

By the Cartesian closed character of the topos, for any pair of manifolds, the
set of all smooth maps between them is itself a smooth space, ie

C∞(M,N) ∈ Smooth (5.47)

Important classes of non-concrete sheaves are the moduli spaces, which are
sheaves giving back appropriate function spaces on a Cartesian space. For in-
stance the moduli space of Riemannian metrics Met is a sheaf

Met : CartSpop → Set (5.48)

U ⊆ Rn 7→ (5.49)

where Met(U) is the set of all Riemannian metrics on U . For instance, as there is
only one metric on a point (since the tangent bundle there is zero dimensional),
we have

Met(R0) = {0} (5.50)

And there is only one component to the metric on the line which must also be
positive, so its set of metric is that of the positive definite smooth functions.

Moduli space of differential forms

Moduli space of symplectic forms

True for any section?

Theorem 164 The moduli spaces of sections is a smooth space

5.5 Category of classical mechanics

The exact category to give to classical mechanics is somewhat controversial, due
to the difficulties of finding an appropriate notion of morphisms, but a common
pick is the category of Poisson manifolds

Definition 165 A Poisson manifold (P, π) is a manifold P equipped with a

Poisson bivector π ∈ Γ(
∧2

P )
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Poisson bracket :

{f, g} = ⟨df ⊗ dg, P ⟩ (5.51)

Definition 166 An ichtyomorphism is a smooth map preserving the Poisson
bivector : f∗π = π

From this, the category of Poisson manifolds is the category with the

Category of Poisson manifolds Poiss

To consider our category within the context of a topos, it is useful to look at
the moduli space of symplectic forms

Slice topos Smooth/Ω2?

Poisson manifold : locally representable concrete object?

5.5.1 Logic

The logic of classical mechanics is tied to the logic of measurement of observ-
ables. If we have some classical theory, with a Poisson manifold

Example : phase space of a point particle in n dimensions R2n, with the Poisson
bracket

If we have some observable

fo : R2n → R (5.52)

Inversely, fo selects a subset of the Poisson manifold. The statement that the
measurement mo is in the Borel subset ∆o ⊆ R is equivalent to a subobject of
Poiss

So = f−1o (∆o) (5.53)

Limits and colimits :

So1 ⊔ So2 (5.54)

What is the topos

Logic and presheaf etc

[40, 41, 42]
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5.6 Category of spectral presheaves for quan-
tum theories

[Difference between the spectral presheaf approach and Bohr topos aproach]

[43, 44, 45, 46, 47, 48, 49, 50, 51]

Another topos of interest is the main topos relating to quantum theory, the
spectral presheaf [Bohr topos?].

5.6.1 Quantum mechanics as a symmetric monoidal cate-
gory

The basic formulation of quantum mechanics in terms of category theory is to
simply look at the categories of its main objects, which are Hilbert spaces and
C∗-algebras.

Definition 167 The category Hilb of Hilbert spaces has as its objects Hilbert
spaces and as morphisms bounded linear maps between two Hilbert spaces.

The condition of bounded linear maps is here to guarantee the existence of a
dual on every operator.

Hilb can be entirely defined in categorical terms etc

C∗-algebra : Internal hom of H? [H,H]

von Neumann algebra :

Definition 168 A von Neumann algebra (or W ∗-algebra) is a C∗-algebra A
that admits a predual, a complex Banach space A∗ with an isomorphism of
complex Banach spaces

∗ : A→ (A∗)
∗ (5.55)

5.6.2 Daseinisation

While monoidal categories are a perfectly serviceable setting for dealing with
quantum mechanics, it has a few issues making it unsuitable for this analysis.
In some sense it corresponds to the construction of an actual ”quantum ob-
ject” with an existence independent of measurement, giving it fairly problematic
properties from a logical perspective (this is the content of the Kochen-Specker
theorem). Due to this it also famously fails to be a topos, which is the main
object we are concerned with here.

To deal with those problems, we have to deal with the Daseinisation[52] of the
category, where rather than deal with some quantum object directly, we only
consider its measurements in some context.
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The simplest way to consider a measurement in quantum mechanics is to look at
the projectors P of the theory. If we ignore the wider case of positive operator-
valued measure and only look at projection-valued measure (we will assume no
additional source of uncertainty beyond quantum theory), every measurement
in a quantum theory can be modelled by this. If a measurement is associated
with an observable A with spectrum σ(A), and of projection-valued measure

E : Σ(σ(A)) → Proj(H) (5.56)

∆ 7→ E(∆) (5.57)

The Born rules is that the probability of the measurement lying in some mea-
surable subset of the spectrum ∆ is

P (X ∈ ∆|ψ) = ⟨ψ,E(∆)ψ⟩ (5.58)

After said measurement the system will collapse to the state E(∆)ψ. Our logic
is that a system is indeed such that X ∈ ∆ if it was last measured to be so.
The creation of a context from there is to consider the set of all measurements
composed from commutative operators so that they can be said to be both true
at the same time in a manner consistent with classical logic. If we have another
measurement derived from an observable A′ with a projection-valued measure
E′, the two PVM commute, in the sense that for any two measurable subsets
of their spectra, ∆ ⊂ σ(A),∆′ ⊂ σ(A′), we have

E(∆)E(∆′) = E(∆′)E(∆) (5.59)

Meaning that if we have done a first measure E(∆) (meaning x ∈ ∆), and a
second measure E′(∆′) (x′ ∈ ∆′), a third measure of the original quantity will
yield the same result :

First measurement : Collapse

ψ → E(∆)ψ

∥E(∆)ψ∥
(5.60)

Second measurement : Collapse E(∆)ψ to E′(∆′)E(∆)ψ

E(∆)ψ

∥E(∆)ψ∥
→ E′(∆′)E(∆)ψ

∥E′(∆′)E(∆)ψ∥
(5.61)

Third measurement :
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P (X ∈ ∆| E
′(∆′)E(∆)ψ

∥E′(∆′)E(∆)ψ∥
) = ⟨ E

′(∆′)E(∆)ψ

∥E′(∆′)E(∆)ψ∥
, E(∆)

E′(∆′)E(∆)ψ

∥E′(∆′)E(∆)ψ∥
⟩

=
1

∥E′(∆′)E(∆)ψ∥2
⟨E′(∆′)E(∆)ψ,E′(∆′)E(∆)E(∆)ψ⟩

=
1

∥E′(∆′)E(∆)ψ∥2
⟨E′(∆′)E(∆)ψ,E′(∆′)E(∆)ψ⟩

= 1 (5.62)

Therefore in a context, we can say that the measured values are ”real” in that
they do not depend on the measurement.

As the identity and the zero projector both commute with every operator, they
are a part of every context.

We will furthermore need the notion of ordering of projectors, which corresponds
to the ordering of the lattice in quantum logic, ie we say that two projectors
P1, P2 are ordered if

P1 ≤ P2 ↔ im(P1) ⊆ im(P2) (5.63)

or equivalently, P1P2 = P2P1P = P1. This means

Example : Given a projection-valued measure P and a measurable set of its
spectrum ∆, with some subset ∆′ ⊆ ∆, by the rules

E(∆′) = E(∆′ ∩∆) = E(∆′)E(∆) (5.64)

We therefore have E(∆′) ≤ E(∆).

In terms of interpretation, this means that for P ≤ P ′, P ′ is weaker : we only
know that our state is in some subspace larger than for P . This can be seen
in the case of projection-valued measures on some interval, where the weaker
statement is x ∈ [a−ε1, b+ε2] compared to the more precise statement x ∈ [a, b].
The best one could find is in fact the 1-dimensional projector, as no projector
is smaller than that (except for the zero projector which cannot provide any
information), and corresponds to the measurement of the exact state. Due to
this, two 1-dimensional projectors are never ordered, unless they are the same

∀P, P ′, dim(im(P )) = dim(im(P ′)) = 1→ (P ≤ P ′ ↔ P = P ′) (5.65)

Properties :

∀P, 0 ≤ P (5.66)
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∀P, P ≤ Id (5.67)

The point of daseinisation is to consider measurements in general not as projec-
tors in the category of Hilbert spaces, but spread onto all possible contexts that a
system may have by considering the closest approximation of that measurement
in a given context. This approximation is given by the narrowest projection
that is superior to our projector, ie for all the projectors P ′ in the context, we
wish to find the one such that P ≤ P ′, and for any other projector P ′′ which
also obeys P ≤ P ′′, P ′ ≤ P ′′. This projector is denoted by, for a context V ,
δ(P )V , the V -support of P . In terms of lattice notation, this is given by

δ(P )V =
∧
{P ′ ∈ proj(V ) | P ≤ P ′} (5.68)

As Id is always part of every context and the supremum of any context, we are
always guaranteed to have such a projector more precise or equal to the identity
projector, which merely informs us that the state is in the Hilbert space at all
and nothing more. If P ∈ proj(V ), δ(P )V = P .

Example of a subset again

We will need to consider the approximation of E(∆) in every possible contexts

P → {δ(E(∆))V |V ∈ V(H)} (5.69)

Why is this a sheaf? Contexts are ordered

von Neumann algebras

To formalize this idea, we will need to use the notion of von Neumann algebra.
While we could merely use C∗ -algebras, there will be a difficulty if we do so :
the projectors of C∗-algebras do not form a complete lattice, ie there may be
subsets S ⊆ proj(A) which lack a lower or upper bound.

An example for this would be the algebra of compact operators K(H) ⊂ B(H)

Every projection in K(H) has finite rank :

dim(im(P )) <∞ (5.70)

If we consider an infinite dimensional Hilbert space, like L2(R), consider this
subset : {Pi}i∈N, such that Pi maps to an i-dimensional subspace, and we have

im(Pi) ⊂ im(Pi+1) (5.71)

Union of these is dense in H?
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⋃
i∈N

im(Pi) = H (5.72)

Supremum : sup({Pi}) = I, but I is not a compact operator.

[Why it happens? Relation to topology]

This possible lack of supremum and infimum would lead to the absence of dis-
junctions and conjunctions in our category [cf logic chapter]. While not tragic
(this would only affect infinite conjunctions of propositions), we will try to keep
things complete.

To insure the completeness of the lattice, we will use instead von Neumann
algebras

Definition 169 A von Neumann algebra A is a C∗-algebra with a predual A∗,
a Banach space dual to A.

Weak operator topology : The basis of neighbourgoods of 0 given by sets of the
form

U(x, f) = {A ∈ L(V,W )|f(A(x)) < 1} (5.73)

for x ∈ V , f ∈ W ∗ = HomTVS(W,k). A sequence of operators (An) converges
to A iff (An(x)) in the weak topology on W .

von Neumann algebras are closed in weak operator topology : any limit of net
converges.

[...]

Definition 170 An Abelian von Neumann algebra

Definition 171 For any Abelian von Neumann algebra over B(H), there exists
a self-adjoint operator generating it as [...]

The Bohr topos

With those notions, we can now proceed with the construction of the Bohr

(in the usual category of compact symmetric monoidal objects etc of quantum
logic) is transformed to a (clopen) sub-object δ(P ) of the spectral presheaf in

the topos SetV(H)op

Kochen-Specker theorem : equivalent to the presheaf on the category of self-
adjoint operator has no global element

Take a C∗-algebra (von Neumann?) A.
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Subcategory of commutative subalgebras ComSub(A) is the poset wrt inclusion
maps

for any operator (self-adjoint?) A, let WA be the spectral algebra. WA is the
boolean algebra of projectors E(A ∈ ∆) that projects onto the eigenspaces
associated with the Borel subset ∆ of the spectrum σ(A). E[A ∈ ∆] represents
the proposition A ∈ ∆

Spectral theorem : for all Borel subsets J of the spectrum of f(A), the spectral
projector E[f(A) ∈ J ] for f(A) is equal to the spectral projector E[A ∈ f−1(J)]
for A. In particular, if f(∆) is a Borel subset of σ(f(A)), since ∆ ⊆ f−1(f(∆)),

E[A ∈ ∆] ≤ E[A ∈ f−1(f(∆))] (5.74)

E[A ∈ ∆] ≤ E[f(A) ∈ f(∆)] (5.75)

This means f(A) ∈ f(∆) is weaker than A ∈ ∆. f(A) ∈ f(∆) is a coarse
graining of A ∈ ∆.

If A ∈ ∆ has no truth value defined, f(A) ∈ f(∆) may have for some f

Relations between two logical systems here :

First, any proposition corresponding to the zero element of the Heyting algebra
should be valued as false, ν(0L) = 0T (L).

If α, β ∈ L, α ≤ β, then α implies β. Ex : A ∈ ∆1, A ∈ ∆2, ∆1 ⊆ ∆2. Valuation
should be ν(α) ≤ ν(β) (monotonicity).

If α ≤ α∨β, β ≤ α∨β, then ν(α) ≤ ν(α∨β) and ν(β) ≤ ν(α∨β), and therefore

ν(α) ∨ ν(β) ≤ ν(α ∨ β) (5.76)

Not as strong as ν(α) ∨ ν(β) = ν(α ∨ β). For instance for A = a1, A = a2, the
projection operator for both of these proposition projects on the 2D span of the
eigenvectors, not their union.

Similarly,

ν(α ∧ β) ≤ ν(α) ∧ ν(β) (5.77)

Exclusivity : a condition and its complementation cannot both be totally true :

α ∧ β = 0L ∧ ν(α) = 1T (L) → ν(β) ≤ 1T (L) (5.78)

Unity condition : ν(1L) = 1T (L)

Take the boolean subalgebra W of the lattice P (H) of projection operators.
Forms a poset under subalgebra inclusion. W is a poset category.
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Take the set O of all bounded, self-adjoint operators on H. Spectral represen-
tation :

A =

∫
σ(A)

λdEAλ (5.79)

σ(A) ⊆ R the spectrum of A, {EAλ |λ ∈ σ(A)} a spectral family of A.

E[A ∈ ∆] =

∫
∆

dEAλ (5.80)

for ∆ a borel subset of σ(A). If a belongs to the discrete spectrum of A, the
projector ontop the eigenspace with eigenvalue a is

E[A = a] := E[A ∈ {a}] (5.81)

for f : R→ R any bounded Borel function,

f(A) =

∫
σ(A)

f(λ)dEAλ (5.82)

Categorification of O : Objects are elements of O, morphisms from B top A if
an equivalence class of Borel functions f : σ(A)→ R exists such that B = f(A),
ie

B =

∫
σ(A)

f(λ)dEAλ (5.83)

Definition 172 The spectral algebra functor W : O →W is

• Objects mapped W (A) = WA, WA is the spectral algebra of A

• Morphisms : if f : B → A, then W (f) : WB →WA is the subset inclusion
of algebras iWBWA

: WB →WA.

Spectral algebra for B = f(A) is naturally embedded in the spectral algebra for
A since E[f(A) ∈ J ] = E[A ∈ f−1(J)] for all Borel subsets J ⊆ σ(B)

iWf(A)W (E[f(A) ∈ J ]) = E[A ∈ f−1(J)] (5.84)

[...]

Category Od of discrete spectra self-adjoint operators
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Definition 173 The spectral presheaf on Od is the contravariant functor Σ :
Od → Set

• Σ(A) = σ(A) (spectrum of A)

• if fOd
: B → A, so that B = f(A), then Σ(fOd

) : σ(A)→ σ(B) is defined
by Σ(fOd

)(λ) = f(λ) for all λ ∈ σ(A)

Works because on discrete spectrum σ(f(A)) = f(σ(A)).

Σ(fOd
◦ gOd

) = Σ(fOd
) ◦ Σ(gOd

) (5.85)

global section : function γ that assigns for every object of the site an element
γA of the topos, such that if f : B → A, then H(f)(γA) = γb.

For the spectral functor, a global section / element is a function that assigns to
each self-adjoint operator A with a discrete spectrum a real number γA ∈ σ(A),
such that if B = f(A), then f(γA) = γB .

Kochen-Specker theorem : if Dim(H) > 2, there are no global sections of the
spectral presheaf.

Continuous case

By Gelfand duality, the presheaf topos PSh(ComSub(A)) contains a canonical
object, the presheaf

Σ : C 7→ ΣC (5.86)

which maps a commutative C∗-algebra C ↪→ A to (the point set underlying) its
Gelfand spectrum ΣC .

[53]

projection

5.6.3 The finite dimensional case

Take the case Cn of the finite dimensional Hilbert space H = Cn, which is for
instance used in quantum computing. The C∗-algebra is just

C∗(H) = L(H,H) (5.87)

(denoted L(H) for short), with operator composition as its algebraic operation
and complex conjugate as involution, as all finite-dimensional linear maps are
bounded. If we pick a specific basis, this is the algebra of n× n matrices on Cn
with matrix multiplication.

https://users.math.msu.edu/users/banelson/conferences/GOALS/notes/7-8_vNa_notes.pdf
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The algebra L(H) is also a von Neumann algebra [proof]

any subalgebra is a von Neumann subalgebra

The projections of this algebra are formed by the orthogonal projections, as any
oblique projection would not be self-adjoint, classified by the Grassmannians of
the space,

n⊕
i=0

Grass(i,H) (5.88)

P = Ir ⊕ 0d−r (5.89)

An operator A will simply be one of the linear map A ∈ L(H)

A context here is an Abelian von Neumann subalgebra of L(H). The category
of contexts V(L(H)), equivalently a set of commuting matrices

”An Abelian von Neumann algebra on a separable Hilbert space is generated
by a single self-adjoint operator.”

Theorem 174 Any abelian von Neumann algebra on a separable Hilbert space
is ∗-isomorphic to either

• ℓ∞({1, 2, . . . , n})

• ℓ∞(N)

• L∞([0, 1])

• L∞([0, 1] ∪ {1, 2, . . . , n})

• L∞([0, 1] ∪ N)

There is therefore some surjection from the self-adjoint operators to commuta-
tive von Neumann algebras :

f : Bsa(H)→ V(W ∗(H)) (5.90)

Spectral theorem :

Theorem 175 For a bounded self-adjoint operator, there is a measure space
(X,Σ, µ) and a real-valued essentially bounded measurable function f on X and
a unitary operator U : H → L2(X,µ) such that

U†TU = A (5.91)

[Tφ](x) = f(x)φ(x) (5.92)

and ∥T∥ = ∥f∥∞
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Finite dimensional :

Theorem 176 There exists eigenvalues {λi} (ordered by value by i) of A and
eigen subspaces Vi = {ψ ∈ H|Aψ = λiψ} such that

H =

n⊕
i=1

Vj (5.93)

Theorem 177 For self-adjoint A, there exists an orthonormal basis of eigen-
vectors of A.

Theorem 178 For a self-adjoint operator A with respect to an orthogonal ma-
trix, there exists an orthogonal matrix T such that T−1AT is diagonal.

Theorem 179 For a self-adjoint operator A, there exists different eigenvalues
{λi}, i ≤ j → λi ≤ λj, and eigen subspaces,

Wi = {ψ ∈ H | Aψ = λiψ} (5.94)

Let Pi be the orthogonal projection of H onto Wi, then

• H is an orthogonal direct sum of Wi : H =
⊕n

i=1Wi, and Wi ⊥ Wj for
i ̸= j

• PiPj = δijPi and IdH =
∑
i Pi

• A =
∑
i λiPi

Theorem 180 For a normal operator A (ie, commutes with its adjoint), there
is a spectral resolution of A.

Spectrum in finite dimension :

σ(A) = (5.95)

For our observable A,

A =
∑
i

λmi Pi (5.96)

The commutative algebra generated is that which is spanned by those projective
operators, ie

∀B ∈ ComSub(A), ∃{ci} ∈ Ck, B =

m∑
i

ciPi (5.97)
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All those operators are commutative, simply by the commutativity of the pro-
jectors between themselves.

Example of two operators with the same commutative subalgebra : any two
operators with the same projectors but different eigenvalues

Alternatively : define them entirely by sets of projectors (up to a scale?), ie
some subset of commutative projector (between 0 and n)

The Gelfand spectrum of a von Neumann algebra is the unique measurable space
we define

”The predual of the von Neumann algebra B(H) of bounded operators on a
Hilbert space H is the Banach space of all trace class operators with the trace
norm ——A——= Tr(—A—). The Banach space of trace class operators is itself
the dual of the C*-algebra of compact operators (which is not a von Neumann
algebra).”

Self-duality in finite dimension due to every operator being trace-class

Spectral measure [54] (1) :

For (X,Ω) a Borel space, a spectral measure is

Φ : Ω→ B(H) (5.98)

• Φ(U) is an orthogonal projection for all U , Φ(U)2 = Φ(U) = Φ(U)∗

• Φ(∅) = 0 and Φ(X) = Id

• Φ(U ∩ V ) = Φ(U)Φ(V )

• For a sequence (Ui) of pairwise disjoint Borel subsets,

Φ(
⋃
i

Ui) =
∑
i

Φ(Ui)

(convergence wrt strong operator topology)

[...]

Spectral measure for finite dimensional case : Given the Abelian von Neumann
algebra generated by

A =
∑
i

λiPi (5.99)

with functions

f(A) =
∑

f(λi)Pi (5.100)

https://cyrilhoudayer.com/wp-content/uploads/2014/09/vn-graduate-course.pdf
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∫
fdµψ = ⟨ψ, f(A)ψ⟩ (5.101)

=
∑
i

f(λi)⟨ψ, Piψ⟩ (5.102)

=
∑
i

f(λi)∥Piψ∥2 (5.103)

measure is the counting measure

µψ =
∑
i

∥Piψ∥δλi
(5.104)

Gelfand dual :

• The space is the discrete space σ(A)

• The sigma-algebra is the discrete sigma algebra given by P(σ(A))

• The measure is the counting measure

The spectral presheaf is then the presheaf

Σ : V(VNA(H))op → Set (5.105)

which maps

Decomposition of operators : Given a set of n 1-dimensional orthogonal projec-
tors, {Pi}, PiPj = 0,

The two-dimensional case

The simplest case we can use is the one-dimensional case, C, but having only
a single state in its projective Hilbert space, is a bit too trivial, so let’s look at
C2.

To classify its orthogonal projectors, let’s look at the Grassmannians of various
dimensions for C2 :

• Gr0(C2) = {0}

• Gr1(C2) ∼= CP 1

• Gr2(C2) = {C2}
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The zero and two dimensional cases are simple enough, the zero-dimensional
projection operator being the zero operator 0, with Abelian von Neumann al-
gebra the trivial algebra {0}, and the two-dimensional projection operator is
the identity map IdC2 , with Abelian von Neumann algebra the scaling matrices,
cIdC2

The one-dimensional case will contain most of the cases of interest. for some
point p ∈ CP 1, ie a point on the Riemann sphere p ∈ S2, p = (θ, ϕ), there is a
projector to that line in the complex plane.

Given any self-adjoint operator Bsa(C2), the finite-dimensional spectral theorem
tells us that the Hilbert space can be decomposed into orthogonal subspaces
{Wi} which each contain one or more of the eigenvectors of the operator. As
there can only be as many orthogonal spaces as the sum of their dimension
being inferior or equal to the total dimension, this will only allow the trivial
case (Just the 0-dimensional subspace), a single 1-dimensional subspace, two
1-dimensional subspace, or a single 2-dimensional subspace. The first case is
simply the projector 0, corresponding only to the 0 operator. The second case
is, for the choice of a point (θ, ϕ) on the Riemann sphere,

A = λP(θ,ϕ) (5.106)

The third case is

A = λ1P(θ1,ϕ1) + λ2P(θ1,ϕ2) (5.107)

And the last case is a diagonal operator,

A = λIdC2 (5.108)

The Abelian von Neumann algebras are therefore classified by those two points
on the Riemann sphere,

((θ1, ϕ1), (θ2, ϕ2))→ VNA(C2) (5.109)

The category of contexts is therefore such that

• The trivial von Neumann algebra is included in all algebras

• The scaling von Neumann algebra is not included in any other algebra?

• The von Neumann algebra constructed from a single one dimensional pro-
jection P(θ,ϕ) is included in any von Neumann algebra constructed from
two one-dimensional projections, as long as they share that projection.



96 CHAPTER 5. EXAMPLE CATEGORIES

Diagram of the category

VNA(P(θ,ϕ)) ≤ VNA(P(θ,ϕ), P(θ′,ϕ′))

Approximation of a projection : For any projection P , there is only two possible
cases :

• The projection is 0, and the V -

Kochen-Specker : C2 is not concerned by this.

The three-dimensional case

To have a case that is actually covered by the big quantum theorems properly,
we will have to consider the case of the Hilbert space C3. This is for instance
the case given by massive spin 1 particles.

The classification of projectors is much the same as previously, thanks to the
duality of Grassmannians,

• Gr0(C3) = {0}

• Gr1(C3) = CP 2

• Gr2(C3) = Gr3−2(C3) = CP 2

• Gr3(C3) = {C3}

The orthogonal subspaces of an operator will be

1. The empty subspace 0

2. One 1-dimensional subspace

3. Two 1-dimensional subspace

4. Three 1-dimensional subspace

5. One 2-dimensional subspace

6. One 1-dimensional subspace and one 2-dimensional subspace

7. One 3-dimensional subspace

As before, the first and last case are trivial, consisting of the trivial subspace
and the whole subspace.
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5.6.4 The infinite-dimensional case

For a Bohr topos with a more interesting structure, such as a differential cohesive
structure, let’s consider instead a simple infinite dimensional case, of the theory
of a quantum particle on the unit interval,

H = L2([0, 1], ℓ) (5.110)

with the inner product

⟨ψ1, ψ2⟩ =

∫ 1

0

ψ†1ψ2µℓ (5.111)

where two functions ψ,ψ′ are identified if they have the same inner product
with all other functions, ie up to differences on a set of measure zero.

This is the Hilbert space used for the particle in a box problem. The bounded-
ness of the underlying space allows us to freely use the position operator

x̂ψ(x) = xψ(x) (5.112)

as it is a bounded operator in this case, using the inequality x∥ψ(x)∥ ≤ ∥ψ(x)∥
for all x ∈ [0, 1]

∥x̂∥ ≤ 1 (5.113)

proof self-adjoint

1-dimensional classification : every projector is part of the set of all 1-dimensional
subspaces of H, is it the projective limit CP∞? The Eilenberg-MacLane space
K(Z, 2), classifier of U(1) bundles

Kuiper’s theorem?

Due to its much more complex nature, the full classification of projection op-
erators, and therefore contexts, is not gonna be attempted here, so that only a
few representative examples will be look at here.

Examples of operators [projectors?] with continuous spectrum

As a continuous operator, x̂ does not have an eigenbasis (outside of the more
general case of the Gelf’and triple rigged Hilbert space), but we can instead
compute its projection-valued measure.

If we consider our position operator x̂ as the generator of an Abelian von Neu-
mann algebra,
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Chapter 6

Logic

One element of interest of topoi as a good foundation for math is that there is
a connection between topos and logical theories.

Definition 181 In a logical theory, a (first-order) signature is composed of

• A set Σ0 of sorts

• A set Σ1 of function

Definition 182 For a category C with finite products, and a signature Σ, a
Σ-structure M in C defines :

• A function between sorts in Σ0 and objects in C

• A function between functions in Σ1 and morphisms in C

• A function between relations and subobjects

[internal v. external logic]

[55]

Logic from types, logic from topos, Heyting algebra [56] The subobjects of
objects X in a topos H form a Heyting algebra, with operations ∩,∪,→ the
partial ordering ⊆ and the greatest and smallest elements 1A, 0A.

The language L(H) of a topos is a many-sorted first-order language having the
objects X ∈ H as types for the terms of L(H), there is a type operator τ which
assigns to any term of L(H) an object τ(p) of H called the type of p.

• 0H is a constant term of type 1.

99
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• For any object A of E, there is a countable number of variables of type A

• For any map f : A→ B, there is an ”evaluation operator” f(−) for terms
of type A to terms of type B : p of type A ⇒ f(p) of type B

• For any ordered pair (A,B) of H, there is an ordered pair operator ⟨−,−⟩

• For any subobject M : A → Ω, there is a unary ”membership-predicate
(−) ∈M for elements of A. x ∈M is an atomic formula provided x ∈ A.

• The propositional connectives ¬, ∧, ∨ and→ are allowed for new formulas

• For any object A and variable x ∈ A, the quantifier ∃x ∈ A and ∀x ∈ A
are allowed

Definition 183 Two objects x, y ∈ A are equal if

x = y ↔ ⟨x, y⟩ ∈ ∆A (6.1)

∆A : A×A→ Ω the diagonal operator

Unique equality :

(∃!x ∈ A)ϕ(x)↔ ∃x ∈ A,∀y ∈ A, (ϕ(y)↔ x = y) (6.2)

Membership :

x ∈ y ↔ ⟨y, x⟩ ∈ (ev : PA×A→ Ω) (6.3)

For x ∈ A and F ∈ BA,

F (x) = (ev : BA ×A→ B)⟨F, x⟩ (6.4)

For any map f : A → B with exponential adjoint f : 1 → BA, we define an
element fe = f(0e) ∈ BA which represents f internally.

6.1 The internal logic of Set

The internal language L(Set) roughly corresponds to classical logic (as applied
to sets). Many-sorted first order language having the objects of the topos as
types

Boolean algebra of subsets : for X ∈ Set, we consider the boolean algebra of
subobjects Sub(X) with the correspondences

→ : every element except the elements of A that aren’t also elements of B.
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Boolean algebra Set operator

a, b, c, . . . A,B,C ⊆ X
∧ ∩
∨ ∪
≤ ⊆
0 ∅
1 X
¬A X \A = Ac

A→ B (X \A) ∪B = Ac ∪B

Table 6.1: Caption

Boolean algebra identities :

A ∪ (B ∪ C) = (A ∪B) ∪ C (6.5)

A ∪B = B ∪A (6.6)

A (6.7)

[...]

A basic example of statement in our topos is given by the morphism 1 → Ω,
which trivially factors through itself,

1
Id1−→ 1

⊤−→ Ω (6.8)

which corresponds to the trivial statement

⊢ ⊤ (6.9)

Simply stating that truth is always internally valid. Conversely, 0, representing
falsity, will not be, as 0 → Ω but on the other hand, the negation of falsity,
[0, 0],

Axioms :

Negation : for p : A ↪→ X, ie

A
p
↪→ X

χA−→ Ω (6.10)

The negation of the set ¬A is such that ¬p : ¬A ↪→ X factors through the
negation and p,

χ¬A = χA ◦ ¬ (6.11)
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Statement with context : p, p→ q ⊣ q : slice category Set/(p:A→X)×[].

Localization modality : ⃝j for j = IdΩ :

6.2 The internal logic of a spatial topos

Logic of Sh(X), Sh(CartSpSmooth)

Locality modality j

6.3 The internal logic of smooth spaces

Subobject classifier : Ω is the sheaf associating to any U ⊆ Rn such that

Ω(U) = {S|S is a J-closed sieve on U} (6.12)

Ω(f) = f∗ (6.13)

⊤ : 1→ Ω : maximal sieve on each object

Points in Ω : all the maps 1→ Ω, all the J-closed sieves on R0.

6.4 The internal logic of classical mechanics

Internal logic for Poisson manifolds

Symmetric monoidal category with projection

A particular Poisson structure we can give is the trivial Poisson structure,

{f, g} = 0 (6.14)

If we consider the map R → P corresponding to this trivial structure on the
real line, we will get our local example of a real line object

Are the measurement given by R with the trivial Poisson structure

types given by morphisms to R?
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6.5 The internal logic of quantum mechanics

There are three possible internal logics that we can consider for quantum me-
chanics here. If we consider it as a symmetric monoidal category, this is a form
of linear logic. If we consider a given Hilbert space H, the logic of the slice
category HilbH is quantum logic. And finally, we will look at the internal logic
of the Bohr topos that we have constructed.

6.5.1 Linear logic

The category of Hilbert spaces and linear logic are not quite like the other ones
that we have looked into so far, not forming a topos.

As we do not have a subobject classifier here, we will not be able to use a
Mitchell-Benabou language. But we can still perform that translation using the
basic translation as a type theory.

If we pick a given Hilbert space H as a reference, propositions are given by
monomorphisms ι : W ↪→ H (up to isomorphisms). In the category of Hilbert
spaces, all monomorphisms are split, meaning that there exists a retraction PW

W
ιW
↪→ H PW−→W (6.15)

such that PW ◦ ιW = IdW . This is the notion we’ve seen before for the state of
a system depending on a projection of the Hilbert space via some measurement
operator.

The category of Hilbert spaces, like the category of vector spaces, has an initial
and terminal object that are the same, the zero object 0, corresponding to the
Hilbert space C0. Being the subobject of any Hilbert space, the unique map
0 : 0→ H has an interpretation as a proposition for any Hilbert space,

Interpretation of daggers logically
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Chapter 7

Higher categories

To generalize categories, we can introduce the concept of higher categories.

Definition 184 A k-morphism is defined inductively as an arrow for which the
source and target is a (k − 1)-morphism, and an object is a 0-morphism.

[Identity of indistinguishables]

Therefore the morphisms we saw are 1-morphisms, 2-morphisms are morphisms
between two 1-morphisms, etc etc

A B

f

g

α

Globular 2-morphism

”In the 2-category Cat, 2-morphisms are natural transformations between func-
tors.”

”The objects in the hom-category C(x,y) are the 1-morphisms in C from x to
y, while the morphisms in the hom-category C(x,y) are the 2-morphisms of C
that are horizontally between x and y.”

Arrow category? Over category?

Example 185 In the category Top, homotopies between two continuous func-
tions are 2-morphisms.

Gauge example?
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For n, r ∈ N∪{∞}, we say that C is an (n, r)-category ”An (n,r)-category is an
r-directed homotopy n-type.” Ex : a (0, 0)-category is isomorphic to a set (the
set of all objects), a (1, 0)-category is a groupoid, a (1, 1)-category is a category

(∞, 0) : ∞-groupoid (∞,∞) :

Descent to negative degrees : (−1, 0)-category : truth values (−2, 0)-category :
Point

n-truncation : a category is n-truncated if it is an n-groupoid

Loop space object and suspension object

Homotopy limit

Definition 186 A weighed limit over a functor F : K → C with respect to a
weight W : K → V is

[K,V ] (W,C (c, F (−))) (7.1)



Chapter 8

Moments

The formalization of qualities of an instance of an object are given by the concept
of moments of such an instance, given by some ”projection operator” ⃝ : C →
C, such that

⃝⃝X ∼=⃝X (8.1)

If we reduce the object X to merely the qualities given by ⃝, there is nothing
left to remove so that any subsequent projection will be isomorphic to it. In
categorical term, we also demand that the projection given as X → ⃝X be,
within the category of qualities ⃝, an equivalence :

⃝(X →⃝X) ∈ core(X) (8.2)

In terms of types, this is an idempotent monad.

Dually, we can also define comonads □, □X → X, with □(□X → X) is an
equivalence

Definition 187 A moment on a type system/topos H is either an idempotent
monad or comonad.

Inclusion of the image :

H⃝ ↪→ H (8.3)

H⃝ ↪→ H (8.4)
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Semantics as similarity : two objects are⃝-similar if their modality is identical

X ∼=⃝ Y ↔⃝X =⃝Y (8.5)

H⃝ is the Eilenberg-Moore category of ⃝

”we may naturally make sense of ”pure quality” also for (co-)monads that are
not idempotent, the pure types should be taken to be the “algebras” over the
monad.”

Accidence : A moment ⃝ is exhibited by a type J if ⃝ is a J-homotopy
localization :

⃝ ∼= locJ (8.6)

⃝J ∼= ∗

Homotopy localization : for an object A ∈ C, take the class of morphisms WA

X × (A
∃!→ ∗) : X ×A p1−→ X (8.7)

what means

”The idea is that if A is, or is regarded as, an interval object, then “geomet-
ric” left homotopies between morphisms X → Y are, or would be, given by
morphisms out of X × A, and hence forcing the projections X × A→ X to be
equivalences means forcing all morphisms to be homotopy invariant with respect
to A.”

Example using the real line for homotopy localization?

Notation : ⃝

Example 188 The adjunction Even ⊣ Odd is an opposition of the form □ ⊣ ⃝

As monads As moments Notation

Comonad p-moment □
Monad s-moment ⃝

Table 8.1: Caption
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8.1 Unity of opposites

Given an adjoint pair of modal operators, ie an adjoint triple

F ⊣ G ⊣ H : C
F
⇄
G
D (8.8)

where F,H : C → D and G : D → C

The two adjunctions imply that G preserves all limits and colimits in D

Gives rise to an adjoint pair of monads,

(GF ⊣ GH) : C
GH

⇄
GF

C (8.9)

and the pair

(FG ⊣ HG) : D
HG

⇄
FG

D (8.10)

Theorem 189 For F ⊣ G ⊣ H, F is fully faithful iff H is.

F being fully faithful is equivalent to η : Id→ GF being a natural isomorphism.

H being fully faithful is equivalent to ε : GH → Id being a natural isomorphism.

GF is isomorphic to the identity if GH is

F ⊣ G ⊣ H is a fully faithful adjoint triple in this case. ”This is often the case
when D is a category of “spaces” structured over C, where F and H construct
“discrete” and “codiscrete” spaces respectively.”

The opposite of a moment ⃝ is a moment □ such that they form either a left
or right adjunction, ie :

(□ ⊣ ⃝) : H□ ≃ H⃝
↪→←−
↪→

H (8.11)

or

(⃝ ⊣ □) : H□ ≃ H⃝
←−
↪→
←−

H (8.12)

We will denote the unity of opposites □ ⊣ ⃝ as a unity of a preceding to a
successive moment, or ps unity, and ⃝ ⊣ □ as an sp unity.[8]

Theorem 190 A ps unity defines an essential subtopos.
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(level of a topos)

Theorem 191 As sp unity defines a bireflective subcategory

”□ ⊣ ⃝ – Here are two different opposite “pure moments” .”

”⃝ ⊣ □ – Here is only one pure moment, but two opposite ways of projecting
onto it.”

8.2 Negation

In addition to opposition, monads and comonads can also have negations, what
are called determinate negations. The negation of a moment will be, if it exists,
an operator which removes specifically the attributes of a given moment. In
other words, if we have both the moment and its negation acting on an object,

□□X = 1 (8.13)

We are left with the terminal object with no specific properties. Equivalently,
□□ =⃝∗, the modality of being that we will see later on.

To do this, we need to find a map from the category to the subcategory con-
taining only objects that the moment map to the terminal object. Given the
counit □X → X, this is the cofiber :

Definition 192 The determinate negation of a comonadic moment is the cofiber
of its counit :

□X = cofib(□X → X) (8.14)

Dually we can also define the determinate negation of a monadic moment, but
while a cofibration only involves the pushout 1 ← □X → X, where the mor-
phism □X → 1 is unique, the fibration is the pullback 1 → X ← ⃝X, which
depends on a specific choice of a point 1 → X in the object. This means that
this negation will either be defined if the object contains a single point, if we
are given a specific choice of a point, if the result is independent from the choice
of basepoint, or if we allow more flexible negations such as the homotopy fiber
of a connected object.

Definition 193 The determinate negation of a monadic moment

⃝X = fib(X →⃝X) (8.15)
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□□ = ∗ (8.16)

Show that the intersection of subcategories is something

Example 194

Definition 195 Determinate negation of a unity of opposite moments ⃝ ⊣ □
if □,⃝ restrict to 0-types and

• ⃝∗ ∼= ∗

• □→⃝ is an epimorphism.

”For an opposition with determinate negation, def. 1.14, then on 0-types there
is no ⃝-moment left in the negative of □-moment”

⃝□ ∼= ∗ (8.17)

Proof 23 By left adjoints preserving colimits,

⃝□X =⃝cofib(□X → X) ∼= cofib(□X →⃝X) (8.18)

Since □X →⃝X is epi, which is preserved by pushout, this is an epimorphism
from the terminal object, therefore the terminal object itself.

”For opposite moments of the form ⃝ ⊣ □, then for stable types X the
hexagons”

⃝X □X

⃝□X X ⃝□X

□X ⃝X

are homotopy exact in that

• both squares are homotopy Cartesian, hence are fracture squares

• the boundary sequences are long homotopy fiber sequences
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”In particular every stable type is the fibered direct sum of its pure ⃝-moment
and its pure □-moment:”

X ≃ (⃝X) ⊕
⃝□X

(□X) . (8.19)

”However, this fiber depends on a chosen basepoint, so it only makes sense on
types which have only one constituent (but possibly this constituent has (higher)
equalities), or, thought of homotopically, have only one connected component.
In this case,⃝T contains that part of the structure of T that is trivialized by
T → ⃝T . Note that □ and □ (or the dual notions) do not form a unity of
oppositions. However, for each object T , a sequence □T → T → □T exists and
this sequence decomposes each T , in the sense that T could be reconstructed
from its aspects under a moment and its negative, as well as their relation. This
is not generally true for unities of oppositions.”

8.3 Sublation

Sublation (or Aufhebung in the original German), levels of a topos

§180 The resultant equilibrium of coming-to-be and ceasing-to-be is in the first
place becoming itself. But this equally settles into a stable unity. Being and
nothing are in this unity only as vanishing moments; yet becoming as such is
only through their distinguishedness. Their vanishing, therefore, is the vanishing
of becoming or the vanishing of the vanishing itself. Becoming is an unstable
unrest which settles into a stable result.

§181 This could also be expressed thus: becoming is the vanishing of being
in nothing and of nothing in being and the vanishing of being and nothing
generally; but at the same time it rests on the distinction between them. It
is therefore inherently self-contradictory, because the determinations it unites
within itself are opposed to each other; but such a union destroys itself.

§182 This result is the vanishedness of becoming, but it is not nothing; as such
it would only be a relapse into one of the already sublated determinations, not
the resultant of nothing and being. It is the unity of being and nothing which
has settled into a stable oneness. But this stable oneness is being, yet no longer
as a determination on its own but as a determination of the whole.

§183 Becoming, as this transition into the unity of being and nothing, a unity
which is in the form of being or has the form of the onesided immediate unity
of these moments, is determinate being.



Chapter 9

Objective logic

Yoneda v.

“These many different things stand in essential reciprocal action via their prop-
erties; the property is this reciprocal relation itself and apart from it the thing
is nothing”

As there will be many notations for very similar concepts of different types, we
will require the following convention :

• Unless a more specific unambiguous symbol exists, monads will be denoted
by ⃝(−), with its subscript to differentiate it

• Similarly, comonads will be denoted by □(−), with its subscript to differ-
entiate it

• A generic topos H

• The terminal object is 1

• The initial object is 0

This to avoid circumstances such as ∗ to represent both an object, functor,
category and monad.

A trivial opposition we have in the objective logic is

Id ⊣ Id (9.1)

This is an opposition defined by the triple of endofunctors

(Id ⊣ Id) : H
←↩
↪→ (9.2)
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Representing three identity functors, composing into the two identity monad
and comonad, with the subtopi being H itself. (Moment of identity?)

9.1 Being and nothingness

“Being, pure being, [...] it has no diversity within itself nor any with a reference
outwards”

“Nothing, pure nothing: it is simply equality with itself, complete emptiness”

The most basic type of moments are the monads of being (Sein) and nothing-
ness (Nichts). This can be seen easily enough by considering that the smallest
subtopos is the initial topos Sh(∅) ∼= 1. Let’s consider the constant functor on
this subtopos,

∆∗ : C→ 1 (9.3)

which maps every object of C to the unique object ∗ of the terminal category
1. This corresponds to the unit type in type theory term, and this is what is
referred to as The One (Das Eins) in objective logic. From this already we can
see that the opposition will be a ps-unity.

We give this functor a left and right adjoint, which as we will see are the constant
functors of the initial and terminal object, ∆0 and ∆1, forming the adjoint
cylinder

(∆0 ⊣ ∆∗ ⊣ ∆1) : C
∆∗−→ 1

∆1

⇒
∆0

C (9.4)

An easy way to see this is via the adjunction of hom-sets :

HomC(∆0(∗), X) ∼= Hom1(∗,∆∗X) (9.5)

There is only one element in the hom-set for ∗ → ∗, and therefore only one in
the hom-set between ∆0(∗) and any object X, making it the initial object of
the topos. Similarly,

Hom1(∆∗(X), ∗) ∼= HomC(X,∆1(∗)) (9.6)

There is only one element in the hom-set for ∗ → ∗, and therefore only one in
the hom-set between any object X and ∆1(∗), making it the terminal object of
the topos, confirming our choice of those adjoints as constant functors.

We can also look at this in terms of the unit and counit of the adjunction. First
if we look at the adjunction ∆0 ⊣ ∆∗, as adjoint functors, they are equipped
with the unit and counit natural transformations,
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η0 : Id1 ⇒ ∆∗ ◦∆0 (9.7)

ϵ0 : ∆0 ◦∆∗ ⇒ IdC (9.8)

they have to obey the triangle identities

∆0 ∆0

∆0∆∗∆0

Id1

∆0η0 ϵ0∆0

In terms of components, this means that for any object X ∈ C (and the only
object ∗ in 1),

Id∆0(∗) = ϵ∆0(∗) ◦∆0(η∗) (9.9)

Id∆∗(X) = ∆∗(ϵX) ◦ η∆∗(X) (9.10)

We have the identities ∆∗(X) = ∗, and any component of the counit can only
be the identity morphism on ∗, so that

Id∆0(∗) = ϵ∆0(∗) ◦ Id∆0(∗) (9.11)

Id∗ = Id∗ (9.12)

The second line is trivial, but the first line tells us that ...

for any object X ∈ C, there exists an object ∆∗(X) ∈ 1 and a morphism
ϵX : ∆0 ◦∆∗(X)→ X such that for every object in 1 (so only for ∗), and every
morphism f : ∆0(∗) → X, there exists a unique morphism g : ∗ → ∆∗(X) = ∗
with ϵX ◦∆0(g) = f .

The unique morphism g is simply the identity function Id1, and our natural
transformation at c is simply ϵX : ∆0(∗)→ X. We therefore need the constraint

ϵX ◦∆0(Id1) = f (9.13)

However, as g can only be one function, we cannot have more than one such
possible morphism f , and we need exactly one to map to Id1. This means that
the empty functor ∆0 maps the single object of 1 to the initial object 0 in C (if
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the category contains one), as its name indicates, justifying our notation of the
constant functor ∆0.

[Do the other triangle?]

Conversely, the right adjoint ∆1 has to obey

∆1 ∆1

∆1∆∗∆1

Id1

η0∆1 ∆1ϵ0

∆1 maps the unique object of the terminal category to the terminal object 0 of
C, if this object exists.

From the adjoint cylinder (∆0 ⊣ ∆∗ ⊣ ∆1), we can see that this is a ps-type unity
of opposites, giving rise to an adjoint modality that we will write as □∅ ⊣ ⃝∗,
with □∅ the modality of nothingness (or empty comonad) and⃝∗ the modality
of being (or unit monad), defined by

□∅ = ∆0 ◦∆∗ (9.14)

⃝∗ = ∆ ◦∆ (9.15)

where the unit and counit of the adjunction are given by those that we have
seen,

In terms of their modal action, the empty monad maps any object of the category
to its initial element,

□∅(X) = 0 (9.16)

while the unit monad maps any object of the category to its terminal element,

⃝∗(X) = 1 (9.17)

In the Hegelian sense : ⃝∗ maps every object of C to a single object (they all
share the same characteristic of existence, ”pure being”, and there is nothing
differentiating them in that respect, no further qualities). Conversely, □∅ maps
every object to nothing, the opposition of being.

The unit of the monad and counit of the comonad are given in terms of compo-
nents by the typical morphisms of the terminal and initial object,
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ϵX : X → ⃝∗X ∼= 1 (9.18)

ηX : 0 ∼= □∅X → X (9.19)

Both of those adjoint functors roughly reflect the fact that each has to map
elements to a single element and morphisms between that element and every
other element to a single morphism.

The composition of the unit and counit give us the unity of opposites for being
and nothingness

∅→ X → ∗ (9.20)

“there is nothing which is not an intermediate state between being and nothing.”

An alternative interpretations of this modality is given by the opposition of the
dependent sum and dependent product on the empty context

∑
∅

(−) ⊢
∏
∅

(−) (9.21)

Cartesian product v. internal home adjunction of the unit type

((−)×∅) ⊣ (∅→ (−)) (9.22)

Negation in categories : internal hom to the initial object : ¬ = [−,∅]

Examples of those two modalities on a topos will not give us very different results
overall, as they all roughly have the same behaviour. For Set for instance,

∀A ∈ Obj(Set), □∅(A) = ∅ (9.23)

∀f ∈ Mor(Set), □∅(f) = Id∅ (9.24)

∀A ∈ Obj(Set), ⃝∗(A) = {•} (9.25)

∀f ∈ Mor(Set), ⃝∗(f) = Id{•} (9.26)

[...]

As the examples we have given thus far do not have particularly varied defini-
tions for the initial and terminal object (being mostly concrete categories where
I = ∅ and T = {•}, the modality of being and nothingness do not offer par-
ticularly more insight in those topos. Smooth sets simply get mapped to the
empty space and the one point space, etc
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”In geometric language these are categories equipped with a notion of discrete
objects and codiscrete objects.”

As any further adjoint would have to be a new functor from H to 1, they would
simply be just the functor ∆∗ again, so that the further adjoints would simply
be the same monads again. There is therefore no further moments at this level.

9.1.1 Negations

The modality of being admits a determinate negation

Theorem 196 The negation of the monad of being is the identity monad :

⃝∗ = Id (9.27)

Proof 24 The computation is simple enough, as

⃝∗(X) = Fib(X →⃝∗X) (9.28)

= Fib(X → 1) (9.29)

= Fib(!X) (9.30)

= X ×∗ ∗ (9.31)

= X (9.32)

This is independent of the choice of basepoint, so that the negation of being is
therefore the identity.

Interpretation? ”contains that part of the structure that is trivialized by X →
⃝X”. As the unit monad removes all struture from the object, the trivialized
part is all of it.

Theorem 197 The left dual

On the other hand, the modality of nothingness’s cofibration does not give us
exactly a determinate negation :

Theorem 198 The negation of the comonad of nothingness is the maybe monad
:

□∅ = Maybe (9.33)

Proof 25

□∅ = cofib(□∅X → X) (9.34)

= X +□∅X 1 (9.35)

= X +∅ 1 (9.36)

= X + 1 (9.37)
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While the determinate negation is well-defined, it is not an idempotent monad,
as it simply adds a new element to any object.

Maybe2X = (MaybeX) ⊔ {•} = X ⊔ {•1, •2} (9.38)

□∅□∅X = 1 (9.39)

□∅□∅ = 0 Interpretation?

Is the hexagonal diagram valid?

9.1.2 Algebra

As a monad, the unit monad has an associated algebra. For a given element X,
and a morphism x :⃝∗X ∼= 1→ X, ie a point of X,

Free algebra : algebra on 1 with morphism Id1 : 1→ 1, trivial algebra

Coalgebra of the empty comonad □∅ : given X and a morphism f : X →
□∅X ∼= 0

If there is no such map : empty coalgebra? Except on ∅, the cofree coalgebra,
which is the coalgebra with

9.1.3 Logic

In terms of logic, those two monads will correspond to modalities

For sets : given a proposition X → Ω, that factors through either 0 or 1, the
corresponding modality is

□∅(X → 1→ Ω) = (9.40)

subset relation defined by χU : X → Ω,

⃝∗(χU ) = (9.41)

Projection to the trivial logic?
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9.1.4 Sublation

If we wish to sublate this initial opposition to find higher ones, we need the
resolution of □∅ ⊣ ⃝∗ to some higher adjunction (□′∅ ⊣ ⃝′∗), so that we need

□′∅□∅ = □∅ (9.42)

⃝′∗⃝∗ = ⃝∗ (9.43)

In other words, each of these preserve the initial and terminal object

□′∅0 = 0 (9.44)

⃝′∗1 = 1 (9.45)

We will look here more specifically at a right sublation, with the additional
property

⃝′∗□∅ ∼= □∅ (9.46)

From the properties of the empty comonad, this simply means that the sublated
monad preserves the terminal product :

⃝′∗0 ∼= 0 (9.47)

which is the exact property of H⃝′
∗

being a dense subtopos. Fortunately there
is a natural choice for this, given by this theorem

Theorem 199 The smallest dense subtopos of a topos is that of local types with
respect to double negation ♯ = loc¬¬. (Johnstone 02, corollary A4.5.20)

From this, we have that the natural sublation of the ground opposition can be
constructed from the localization by the double negation. This is called the
sharp modality.

To understand the role of the sharp modality here, let’s look at the internal
logic, the most natural setting for the double negation. As a proposition in the
internal logic corresponds to some subobject relation,

U 1

X Ω

ιU

!U

⊤

χU
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In logical term, the subobject U associated to a proposition p is the largest
context in which p holds, and its negation ¬XU the largest context in which
¬p holds, but as our categories are not required to be boolean, the proposition
p ∨ ¬Xp is not required to be ”true”, in the sense that the object associated to
it is not X itself. For instance in a Grothendieck topos over a topological space,
given some open subset U ⊆ X,

¬U = (9.48)

The point structure is preserved however, as for any point x : 1 → X, we have
that either this point belongs to U

[diagram of 1→ U → X]

or to its negation

[diagram of 1→ ¬U → X]

[...]

”The double negation subtopos is Boolean topos.” (Johnstone 02, lemma A4.5.21)

The subtopos H♯ is therefore a Boolean topos. It can be understood in terms
of the existence of a complement for any subobject, where every object can be
split exactly in two parts by a subobject, one part which contains every point
of A, and another part which contains every other point. [etc etc]

Any adjoint modality □ ⊣ ⃝ that includes the modalities ∅ ⊣ ∗, ie ∅ ⊂ □,
∗ ⊂ ⃝, formalizes a more determinate being (Dasein)

Sublation by ♯ always exists for any topos?

”A topos E is Boolean iff E has exactly one dense subtopos, namely E neg neg
= E.”

Left sublation?

□′∅⃝∗ ∼=⃝∗ (9.49)

Preserves the unit monad

□′∅1 ∼= 1 (9.50)

This is true of ♯ but is it the first possible sublation?
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9.2 Necessity and possibility

Before looking further into the first sublation of the ground opposition, let’s
briefly look at another direction to generalize.

The interpretation of being and nothingness as the duality between the depen-
dent product and sum on the empty context gives us a possibility of generaliza-
tion in this direction, in which we simply generalize to an arbitrary context.

As we’ve seen before, the context Γ of the internal logic corresponds to the
slice category CΓ. If we wish to change our context, this is done via a display
morphism f : X → Y which induces the functor

f∗ : C/Y → C/X (9.51)

The ground that we’ve seen is done on the empty context, which is given by the
terminal object 0. The corresponding context is that of the display morphism
!0 : 0→ 1, changing the context from 0, falsity, to 1, truth. The corresponding
contexts are C1

∼= C and C0 = 1, giving the base change functor

f∗ : C→ 1 (9.52)

which is exactly the functor that we used as its basis.

The interpretation in this sense is therefore that ⃝∗ is adding the context

For a morphism f : X → 1 (what context is that?) :

f∗ : C→ C/X (9.53)

Adjoints : (f! ⊣ f∗ ⊣ f∗)

(
∑
f

⊣ f∗ ⊣
∏
f

) : HX

∏
f

⇒∑
f

HX
f∗

−→ HX (9.54)

for f : X → 1 :

[...]

Adjoint modality : (f!f
∗ ⊣ f∗f∗)

Writer comonad and reader monad

Possibility comonad and necessity monad (□ ⊣ ♢)

[...]

The interpretation of this modality in terms of standard modal logic (the modal-
ity of necessity and possibility) can be understood using the Kripke semantics
of modal logic.
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interpretation of the ground in this context : ⃝∗ sends every proposition to true
and □∅ to false. Every proposition is possibly true and none are necessarily true.

9.3 Determinate being

Determinate being (dasein), being in a certain place (hacceity?)

Sublation of being/non-being into non-becoming/becoming? idk via localization
of ¬¬

The localization of ¬¬ allows for a boolean topos : we only consider subobjects
which have a complement. For any object X and subobject ι : S ↪→ X, there is
a complementary object ι : S ↪→. We can separate S from X.

9.4 Cohesion

“Quantity is the unity of these moments of continuity and discreteness”

As we’ve seen, the natural sublation of the ground is given by the localization
by the double negation, loc¬¬, the sharp modality ♯. To get the full sublation
of the adjunction, we will need also the existence of an adjoint modality, called
the flat modality ♭. If this adjoint exists, the given adjoint cylinder

H♯ ↪→ H
Γ−→ H (9.55)

As a boolean topos, H♯ is typically either the topos of sets Set or some variant
thereof, such as some ETCS variant of it or plus minus the axiom of choice. We
will generally assume that we are using Set here, but most of the properties
used here should generalize to any boolean topos.

Qualität/Quality, Etwas/Something, Die Endlichket/Finitude, Etwas und ein
Anderes/Something and another

[57, 58]

The opposition generated here is ♭ ⊣ ♯, called cohesion. As ♯ can be understood
as the

In the context of a topos,

Negation : internal hom into the initial object, ¬ = [−,∅]. In a topos, ¬A is
the internal hom object 0A with 0 the initial object

Double negation : 00
A

¬¬ = [[−,∅],∅] (9.56)
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For an object X ∈ H, ¬X = [X,∅], the internal hom of all morphisms X → ∅

Topos localized by ¬¬, the new topos is H♯. The opposition ♯ ⊣ ♭ is the ground
topos of H♯ Localization of a topos

Adjoint triple

: based on the functor Γ, the direct image functor

Definition 200 A topos H is cohesive over a base topos B if it is equipped with
the geometric morphisms

(f∗ ⊣ f∗) : H
f∗
⇄
f∗

B (9.57)

and obeys the following properties :

• It is a locally connected topos :

For most of our cases here, the base topos will be consider will be the topos of
sets, Set, so that it is best to understand cohesion in terms of functors to sets.
The archetypical cohesion is done using the global section functor Γ :

Cohesion is a sublation of the ground opposition

Do we have

Γ(A+ ¬XA) ∼= Γ(X) (9.58)

Preservation of pushout requires the geometric morphism to be surjective idk

Similarly ♭(A+ ¬XA) ∼= ♭(X)?

If this flat modality admits a further adjunction, we will call its left adjoint
the shape modality,

∫
. This will allow us to define the full notion of cohesion

properly by adding some appropriate requirements to it.

First, we ask that
∫

admits a definite negation. As this is an sp-unity, the two
moments are meant to project on the same moment, so that the negation [...]

∫
∗ ∼= ∗ (9.59)

and ♭→
∫

is an epimorphism.

Vague : ♭ maps to the points of X, and every point of
∫
X is an image of one

of those points. (point to pieces transform)

To give it its proper meaning of being about the connected components of
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(Π0 ⊣ Disc) : H
Π0−→ Set

Disc−→ H (9.60)

HomSet(Π0(X), A) ∼= HomH(X,Disc(A)) (9.61)

The hom-set of functions from our space to the discrete space from a set A is
isomorphic to the set of functions from Π0(X) to that set.

Interpretation : Π0 send each element - subobject in the same ”connected com-
ponent” to a different point.

Connected object : X is a connected object if the hom-set functor preserves
coproducts

Shape preserves connected objects?

Shape modality :
∫

= Disc ◦ Π0. sp-unity, so
∫

and ♭ share the same space :∫
X is a discrete space : ♭

∫
=

∫
In many cases, we will ask that the shape modality correspond to a retraction
to a point of the (path)-connected components of the space.

Path space object I, localization by I, typically R.

[...]

Hierarchy :

Topos (every topos has a terminal geometric morphism with adjoint?), sheaf
topos (geometric morphism?)

splitting : existence of a further left / right adjoint :

local topos (codisc adjoint), locally connected topos ()

essential topos? (???)

thm : if a topos has a site with an initial object / terminal object, Proposition
4.3

Cohesive site

9.4.1 Negation

The negation of the sharp modality :

♯X = Cofib(♯X → X) (9.62)

X ⊔♯X ∗ (9.63)
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Universal property with this object : for any object Y such that there is a
morphism f : Y → X, there exists a unique function β : Y → ♯X such that

Negation of the flat modality?

♭ = Fib(X → ♭X) (9.64)

Negation of the shape modality

∫
X = Cofib(

∫
X → X) (9.65)

9.4.2 Algebra

9.4.3 Concrete objects

Definition 201 An object in a cohesive topos is concrete if the unit of the
adjunction (Γ ⊣ CoDisc) is a monomorphism.

If a morphism has a concrete codomain, ie f : X → Y is such that

Concrete objects and separated presheaves

”is such that the X → ♯X (unit or counit?) is a monomorphism”

Definition 202 A morphism f : X → Y is said to be intensive if its codomain
X is concrete.

Definition 203 For an intensive morphism, we have [some isomorphism idk]

Extensive objects : maximally non-concrete codomin, ie X is

9.4.4 Logic

Definition 204 A proposition p : A ↪→ X is discretely true if in the pullback

♯A
∣∣
X

♯A

X ♯X
ηX

♯A
∣∣
X
→ X is an isomorphism

Proposition that is true over discrete spaces.

Theorem 205 If p
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9.4.5 Cohesion on sets

Set is not a cohesive topos, as we will see (or more specifically, it does not
have the strongest cohesion that can be had, being sufficiently cohesive). If we
consider the case where its base topos is itself, then we need to investigate the
adjoint cylinder from its functor of global sections, ie

(Disc ⊣ Γ ⊣ CoDisc) : Set
CoDisc
⇒
Disc

Set
Γ−→ Set (9.66)

The global section functor, as the hom functor from the terminal object, is
simply the identity on sets, as sets are entirely defined by their points

As the identity, there are indeed a left and right adjoint to this functor, but they
will both be the identity as well, so that Disc = CoDisc = IdSet. This is about
the behaviour we would expect from the discrete object, sending an object to
the coproduct of terminal objects over its point content, in other words a set
with the same cardinality. However, the codiscrete object, being the same, does
not seem to follow what we would expect of a codiscrete object, of being ”one
whole” in some sense.

Let’s push on and see the issue however. The same way as before, the discrete
functor does have a further left adjoint, again the identity, Γ! = Π0 = IdSet.
This can be understandable in that the connected components of a set are indeed
the same as the set itself, sets being ”totally disconnected” objects. We also
have that it is locally connected, in that sets are indeed the coproduct of an
object over the connected components, ie

X ∼=
⊔

i∈Π0(X)

{•} (9.67)

It is indeed connected, in that Π0 preserves the terminal object (being the
identity), and strongly connected, preserving finite products. And it local, as
we can extend the identity again with codisc etc [redo]

The shape and flat modality Id ⊣ Id are indeed an epimorphism (points to pieces
transformation), being just the identity

The natural transformation ♭ →
∫

(the point-to-pieces transform) is indeed
an epimorphism (an isomorphism even), still being the identity, and there is a
sublation of the initial opposition (♯0 = 0, as this is just the identity).

Pieces of powers are powers of pieces : obviously true again because identity

The one issue is that of the connectedness of the subobject classifier, 2, as
trivially, Π02 = 2, being the identity map, and not 1 as we would need to. This
stems from an obstruction found in [59], saying that a localic topos cannot both
have a shape modality over sets that preserves the product and have a connected
subobject classifier. [proof?]
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[local topos?]

As we’ve seen in the case of Set, there are two possible Lawvere-Tierney closure
operators we could try over sets, and the loc¬¬ closure is the discrete topology,
in the sense that every subset S ⊆ X is its own closure, including singletons
{•}. No point is ”in contact” with another, we can entirely separate a given
element from the whole. The other closure operator is the trivial one j(x) = 1,
giving us the chaotic topology on 1.

Equivalence between the lawvere-tierney topology and Grothendieck topology,
chaotic grothendieck topology, collapse of sets into triviality?

As ¬¬ = IdΩ, the localization does not do anything and the smallest dense
subtopos is simply itself, there are no levels in between Set and the ground.

The global section functor Γ(−) ∼= HomSet(1,−) is simply the identity, as

Γ(S) ∼= HomSet(1, S) ∼= S (9.68)

Since the hom-set of the point to a set is of the same cardinality as the set itself,
and

Γ(f) (9.69)

The left adjoint functor Disc here will work out as

HomSet(Disc(−),−) ∼= HomSet(−,−) (9.70)

while the right adjoint is

HomSet(−,−) ∼= HomSet(−,CoDisc(−)) (9.71)

As far as the objects go, these are identities, so that the discrete and codis-
crete objects of sets are the same objects (they have the same point content).
However, the actions on morphisms does change, and most importantly, on
the Lawvere-Tierney topology of the topos. For the morphism j : Ω → Ω,
j ∈ HomSet(2, 2), we have

HomSet(Γ(−),−) ∼= HomSet(−,CoDisc(−)) (9.72)

The left adjoint modality ♭ ⊣ ♯

”Note that in this example, the “global sections” functor S → Set is not the
forgetful functor Set/U → Set (which doesn’t even preserve the terminal ob-
ject), but the exponential functor ΠU = Hom(U,−). This is the direct image
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functor in the geometric morphism Set/U → Set, whereas the obvious forget-
ful functor is the left adjoint to the inverse image functor that exhibits S as a
locally connected topos.”

Negation of sharp modality :

♯X = X ⊔♯X ∗ (9.73)

= X ⊔♯X ∗ (9.74)

Is it just ∗? The negation of the moment of continuity (maximally non-concrete
object)

9.4.6 Cohesion of a spatial topos

Spatial topos always has disconnected truth values hence not a sufficiently co-
hesive topos cf Lawvere

9.4.7 Cohesion of smooth spaces

As a Grothendieck topos, the cohesiveness of smooth spaces relies on the cohe-
siveness of its site, the category of Cartesian spaces.

CartSp has a terminal object (R0)

CartSp is cosifted in that it has finite products, ie for any U1, U2 ⊆ Rn1 ,Rn2 ,

U1 × U2 ⊆ Rn1+n2 (9.75)

CartSp with its coverage (differentiably good cover) is locally connected, ie for
any object [...]

As a cohesive site, CartSp has the global section functor Γ which simply assigns
to each open set of Rn its set of points

Γ(UCartSp) = USet (9.76)

and as its left adjoint the functor Γ∗ ∼= LConst ∼= Disc which associate to any
set the smooth space composed by an equinumerous number of disconnected
copies of R0,

Disc(X) =
⊔
x∈X

R0 (9.77)

This is equivalently the discrete (fine?) diffeology on a set, given by some
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Its right adjoint is given by the coarse diffeology on a set

Right adjunction :

HomSet(Γ(U), X) = HomCartSp(U,CoDisc(X)) (9.78)

Every possible function (as a set) between some Cartesian space U and our
codiscrete space X correspond to a valid plot.

In terms of intuition, this means that every point is ”next to” every other point
in some sense. For instance, given the probe [0, 1], there is a smooth curve for
every possible combination of points, ie the set of smooth curves is just X [0,1].

There is therefore no meaningful way to separate points (as we would expect
from the smooth equivalent of the trivial topology).

Given these two functors, we can construct our two modalities. Our flat modal-
ity is

♭ = Disc ◦ Γ (9.79)

which first maps a smooth space to its points and then to the coproduct of R0

over those points, giving us the discrete space ♭X, and the sharp modality ♯ is

♭ = CoDisc ◦ Γ (9.80)

which maps a smooth space to its points and then to the

Are all smooth spaces in the Eilenberg category diffeological spaces?

fine diffeology v. coarse diffeology

”Every topological space X is equipped with the continuous diffeology for which
the plots are the continuous maps.”

Negation of

Extensive and intensive quantities

9.4.8 Cohesion of classical mechanics

9.4.9 Cohesion of quantum mechanics

The terminal object in the Bohr topos is given by the constant sheaf which
maps all commutative operators in a context to a spectrum of a single element,
the singleton {•} in Set. This is the spectral presheaf which has a spectrum of
a single value for all

Global section functor : hom-set of
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Γ : C0 → (9.81)

Γ : C0 → (9.82)

9.4.10 Sublation

9.5 Elastic substance

[60]

Sublation of
∫
⊣ ♭ to I ⊣ &, ⃝ ⊣ □ opposition

X → IX →
∫
X (9.83)

Differential cohesion

None of the topos we have seen thus far are differentially cohesive, but it is simple
enough to extend them to be. This is generally done concretely by changing
the site to include an infinitesimal structure. The basic example for this is the
site of formal Cartesian spaces, FormalCartSp, which is the site with objects
being open sets of Rn composed with an infinitesimally thickened point, D. As
we will see, D is a point if we forget the elastic structure, R(D) ∼= ∗, but in basic
mathematical terms, this relates to Weil algebras, the algebras of infinitesimal
objects.

The basic example of a Weil algebra is the algebra of dual numbers, a vector
space composed by a pair of real numbers, R[ε]/ε2

(x+ ϵy)2 = x2 + xyε (9.84)

The topos from that site is the Cahier topos,

Cahier = Sh(FormalCartSp) (9.85)

[61, 62, 63]

9.5.1 Synthetic infinitesimal geometry

Koch-Lawvere axioms



132 CHAPTER 9. OBJECTIVE LOGIC

9.5.2 Differential cohesion of the Cahier topos

Formal Cartesian space FormalCartSp

9.5.3 Crystalline cohomology

9.6 Solid substance

Sublation of R and I, (⇝⊣ Rh)

Bosonic v. fermionic spaces
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Nature

10.1 Mechanics topos

The general topos typically used by nlab to respond to the requirements of
all those modalities is the super formal smooth infinity-groupoid. This is the
∞-sheaf on a special site composed from the category of Cartesian spaces (to
give the cohesion), the category of infinitesimally thickened points (to give the
elasticity), and the category of superpoints (to give the solidity).

We have already seen the category of Cartesian spaces in detail, so let’s now
look into infinitesimally thickened points.

Infinitesimally thickened points are a geometrical realization of the formal notion
of infinitesimals as provided by Weil algebras.

Example : dual numbers

(x, ϵ) 7→ f(x, ϵ) = f(x) (10.1)
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Chapter 11

The Ausdehnungslehre

One early attempt at mathematization of similar philosophical notions was the
Ausdehnungslehre of Grassmann[5]

[64, 65, 66]
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Chapter 12

Kant’s categories

Quantity : unity, plurality, totality

Quality : reality, negation, limitation

Relation : inherence and subsistence, causality and dependence, community

Modality : possibility, actuality, necessity
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Chapter 13

Lauter einsen

Cantor’s original attempt at set theory[67] involved the notion of aggregates
(Mengen), which is what we would call a sequence today, some ordered asso-
ciation of various objects. If we have objects a, b, c, . . ., their aggregate M is
denoted by

M = {a, b, c, . . .} (13.1)

Despite the notation reminiscent of sets, the order matters here. The notion
closer to that of a set is given by an abstraction process M , in which the order
of elements is abstracted away (this would be something akin to an equivalence
class under permutation nowadays).

The cardinality of the aggregate is given by a further abstraction, M , given by
removing the nature of all of its element, leaving only ”units” behind :

M = {•, •, •, . . .} (13.2)

• here is an object for which all characteristics have been removed, and all
instances of • are identical. In some sense this is the application of the being
modality on its objects : we only have as its property that the object exists,
similarly to das eins.

Comment from Zermelo [68, p. 351]:

“The attempt to explain the abstraction process leading to the ”cardinal num-
ber” by conceiving the cardinal number as a ”set made up of nothing but ones”
was not a successful one. For if the ”ones” are all different from one another, as
they must be, then they are nothing more than the elements of a newly intro-
duced set that is equivalent to the first one, and we have not made any progress
in the abstraction that is now required.”

139
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Relation to the discrete/continuous modality

From Lawvere : The maps between the Menge and the Kardinal is the adjunc-
tion

(discrete ⊣ points) : M
points

⇄
discrete

K (13.3)

The functor points maps all elements of an object in M to the ”bag of points”
of the cardinal in K, the functor discrete sends back

[69]
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Spaces and quantities

From Lawvere[70]

Distributive v. other categories

Intensive / extensive

”The role of space as an arena for quantitative ”becoming” underlies the quali-
tative transformation of a spatial category into a homotopy category, on which
extensive and intensive quantities reappear as homology and cohomology.”

Definition 206 A distributive category C is a category with finite products
and coproducts such that the canonical distributive morphism

(X × Y ) + (X × Z)→ X × (Y + Z) (14.1)

is an isomorphism, ie there exists a morphism

X × (Y + Z)→ (X × Y ) + (X × Z) (14.2)

that is its inverse.

Distributive categories are typically categories that are ”like a space” in some
sense, in the context that concerns us. In terms of physical space, we can
visualize it like this :

141
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Whether we compose this figure by first spanning each red line along the black
line and then summing them, or first summing the two red lines and spanning
them along the black line does not matter and will give the same figure.

Example 207 If a category is Cartesian closed and has finite coproducts, it is
distributive.

Proof 26 In a Cartesian category, the Cartesian product functor X × − is a
left adjoint to the internal hom functor [X,−]. As colimits are preserved by left
adjoint tmp, we have

(X + Y ) (14.3)

This means in particular that any topos is distributive, such as Set and Smooth.

Example 208 The category of topological spaces Top is distributive.

Proof 27 In Top, the product is given by spaces with the product topology,

(X1, τ1)
∏

(X2, τ2) = (X1 ×X2, τ1
∏

τ2) (14.4)

where the product of two topologies is the topology generated by products of open
sets in X1, X2 :

τ1
∏

τ2 = {U ⊂} (14.5)

[...] and the coproduct is the disjoint union topology :

[Category of frames?]

As can be seen, those are some of the most archetypical categories of spaces.

Definition 209 A linear category is a category for which the product and co-
product coincide, called the biproduct. For any two objects X,Y ∈ C, the
biproduct is

X
i1
⇄
p1

X ⊕ Y
p2
⇄
i2

Y (14.6)

Proposition 210 A linear category has a zero object 0, which is both the initial
and terminal object.

Proof 28 This stems from the equivalence of initial and terminal objects as the
product and coproduct over the empty diagram.

Proposition 211 In a linear category, there exists a zero morphism 0 : X → Y
between any two objects X,Y , which is the morphism given by the terminal object
map 0→ Y and the initial object map X → 0 :

0X,Y : X → 0→ Y (14.7)

https://ncatlab.org/nlab/show/adjoints+preserve+%28co-%29limits
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A linear category is so called due to its natural enriched structure over commu-
tative monoids.

Proposition 212 For any two morphisms f, g : X → Y in a linear category,
there exists a morphism f ⊕ g defined by the sequence

X → X ×X ∼= X ⊕X f⊕g−→ Y ⊕ Y ∼= Y + Y → Y (14.8)

Proposition 213 The sum of two morphisms is associative and commutative

Proposition 214 The zero morphism is the unit element of the sum.

”in any linear category there is a unique commutative and associative addition
operation on the maps with given domain and given codomain, and the com-
position operation distributes over this addition; thus linear categories are the
general contexts in which the basic formalism of linear algebra can be inter-
preted.”

Definition 215 If in a linear category every morphism f : X → Y has an
inverse denoted −f : X → Y , such that f ⊕ −f = 0, then it is enriched over
the category of Abelian groups Ab, and is called an additive category.
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Chapter 15

Parmenides

Arguments from Zeno & Parmenides :

“All objects are similar to each other and all objects are different from each
other”

Parmenides proceeded: If one is, he said, the one cannot be many? Impossible.
Then the one cannot have parts, and cannot be a whole? Why not? Because
every part is part of a whole; is it not? Yes. And what is a whole? would not
that of which no part is wanting be a whole?

Certainly. Then, in either case, the one would be made up of parts; both as
being a whole, and also as having parts?

To be sure. And in either case, the one would be many, and not one? True.
But, surely, it ought to be one and not many? It ought. Then, if the one is to
remain one, it will not be a whole, and will not have parts?

No. But if it has no parts, it will have neither beginning, middle, nor end; for
these would of course be parts of it.

Right. But then, again, a beginning and an end are the limits of everything?

Certainly. Then the one, having neither beginning nor end, is unlimited? Yes,
unlimited. And therefore formless; for it cannot partake either of round or
straight.

But why? Why, because the round is that of which all the extreme points are
equidistant from the centre?

Yes. And the straight is that of which the centre intercepts the view of the
extremes?

True. Then the one would have parts and would be many, if it partook either
of a straight or of a circular form?
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Being is indivisible, since it is equal as a whole; nor is it at any place more,
which could keep it from being kept together, nor is it less, but as a whole it is
full of Being. Therefore it is as a whole continuous; for Being borders on Being.



Chapter 16

Bridgman and identity

what the fuck is that about [12, 71]

”We must, for example, be able to look continuously at the object, and state
that while we look at it, it remains the same. This involves the possession by
the object of certain characteristics — it must be a discrete thing, separated
from its surroundings by physical discontinuities which persist.”

Definition of a system?
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Chapter 17

Ludwig Gunther

Relation of moments to Ludwig’s structuralism?

Axiomatization from Ludwig [72]

[73]
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Chapter 18

Dialectics of nature

When we look at dialectical logic in practice, ie [14], the examples given are
much more concrete. We are considering the identity of some entity, such as an
object, a group, etc, and considering what it means for at entity to be identical
to itself. All concrete entities are never identical to themselves, either in time,
context, etc.

From Engels :

The law of the transformation of quantity into quality and vice versa; The law
of the interpenetration of opposites; The law of the negation of the negation.

Example : an object moving in space, an organization changing, ship of Theseus,
etc

To keep things concrete, let’s try to consider a simple example of both category
theory and dialectical logic, which is an object in motion. We will simply
consider the kinematics here and not the dynamics as this is unnecessary.

The simplest case is the (1 + 1)-dimensional case, of a point particle moving
along a line x : Lt → Ls.

First notion : We are considering the ”identity” of an object under a certain
lens (ie with respect to its relations with a number of other objects). Its identity
is only assured under the full spectrum of those relationships, ie we say that
two objects A,B are identical if

∀X ∈ H, HomH(A,X) ∼= HomH(B,X), HomH(X,A) ∼= HomH(X,B) (18.1)

Relation to Yoneda? Relation to Hegel’s ”only the whole is true” thing?

This corresponds to the hom covariant and contravariant functor
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hA ∼= hB , hA ∼= hB (18.2)

Two objects are identical if their hom functors are naturally isomorphic, ie if
there exists a natural transformation

η : hA ⇒ hB , ϵ : hA ⇒ hB (18.3)

with two-sided inverses each.

Yoneda embedding :

Nat(hA, hB) ∼= HomH(B,A) (18.4)

Nat(hA, hB) ∼= HomH(A,B) (18.5)

(18.6)

those isomorphisms are elements of this, therefore isomorphic to morphisms
from A to B. Therefore A and B are identical in term of their relationships to
every other object if they are identical in the more typical sense of the existence
of an isomorphism.

As those are functors, this analysis also applies to elements of the objects X, or
subobjects. For any two monomorphisms

x, y : S → X (18.7)

We say that those elements are identical if the hom functors applied to them
[...]

The breakage of the law of identity comes by considering different perspectives.
If given an object X [or element x : • → X?], we attempt to use different
relations with other objects to ”probe” it, its moments and the assessment of
its identity will change.

[Abstract example ?]

Expression via the subobject classifier of the topos

Example : case of motion. What does it means for a moving object to be in
different positions.

Ex : consider the position of an object wrt two different time intervals [ta, tb],
[t′a, t

′
b], rather than all possible intervals.

Characterization by observables at those different times

Observables : Oi : Conf → R [Isbell duality thing idk]
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[40] Andreas Döring and Chris Isham. “What is a thing?”: Topos theory in
the foundations of physics. In New structures for physics, pages 753–937.
Springer, 2010.

[41] Urs Schreiber. Classical field theory via Cohesive homotopy types. Tech-
nical report, Springer, 2015.
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[72] Günther Ludwig and Gérald Thurler. A new foundation of physical theories.
Springer Science & Business Media, 2007.

[73] Henrique de A Gomes. Back to parmenides. arXiv preprint
arXiv:1603.01574, 2016.

https://arxiv.org/abs/gr-qc/9608013v1
https://arxiv.org/abs/gr-qc/9608013v1
https://pages.physics.ua.edu/staff/fabi/InvitationSDG.pdf
https://www.jstor.org/stable/2369379
https://matematicaitaliana.sns.it/opere/138/
https://matematicaitaliana.sns.it/opere/138/
http://www.numdam.org/item/PHSC_2000__4_1_3_0/
http://www.numdam.org/item/PHSC_2000__4_1_3_0/
https://archive.org/details/contributionstof00cant
https://gdz.sub.uni-goettingen.de/id/PPN237853094
https://gdz.sub.uni-goettingen.de/id/PPN237853094
https://github.com/mattearnshaw/lawvere/blob/master/pdfs/1994-cohesive-toposes-and-cantors-lauter-einsen.pdf
https://github.com/mattearnshaw/lawvere/blob/master/pdfs/2015-alexander-grothendieck-and-the-concept-of-space.pdf
https://philsci-archive.pitt.edu/15144/13/cfp_final_short2.pdf

	Introduction
	Types
	Dependent types
	Martin-Löf type theory
	Homotopy types
	Modalities

	Categories
	Examples
	Morphisms
	Functors
	The hom-functor
	Full and faithful functor
	Subcategory inclusion

	Natural transformations
	Yoneda lemma
	Enriched categories
	Comma categories
	Arrow categories
	Slice categories
	Coslice categories
	Base change

	Limits and colimits
	Products and coproducts
	Spans and cospans
	Equalizer and coequalizer
	Directed limits
	Properties of limits and colimits
	Limits and functors

	Monoidal categories
	Internalization
	Subobjects
	Simplicial categories
	Equivalences and adjunctions
	Grothendieck construction
	Reflexive subcategories
	Monads
	Linear and distributive categories

	Spaces
	General notions of a space
	Mereology
	Topology

	Frames and locales
	Sublocales

	Coverage and sieves
	Cech nerves

	Subobject classifier
	In a sheaf topos

	Elements
	Points

	Internal hom
	Presheaves
	Simplexes

	Sheaves
	Topos
	Grothendieck topos

	Site
	Site morphisms

	Stalks and étale space
	In a topological context

	Topological spaces
	Geometry
	Subtopos
	Motivic yoga
	Lawvere-Tierney topology
	Localization
	Number objects
	Ringed topos

	Example categories
	Category of sets
	Limits and colimits
	Elements
	Subobject classifier
	Closed Cartesian

	Topos on a set
	Topos of a topological space
	Category of smooth spaces
	Limits and colimits
	Subcategories of smooth sets
	Non-concrete objects
	Important objects

	Category of classical mechanics
	Logic

	Category of spectral presheaves for quantum theories
	Quantum mechanics as a symmetric monoidal category
	Daseinisation
	The finite dimensional case
	The infinite-dimensional case


	Logic
	The internal logic of Set
	The internal logic of a spatial topos
	The internal logic of smooth spaces
	The internal logic of classical mechanics
	The internal logic of quantum mechanics
	Linear logic


	Higher categories
	Moments
	Unity of opposites
	Negation
	Sublation

	Objective logic
	Being and nothingness
	Negations
	Algebra
	Logic
	Sublation

	Necessity and possibility
	Determinate being
	Cohesion
	Negation
	Algebra
	Concrete objects
	Logic
	Cohesion on sets
	Cohesion of a spatial topos
	Cohesion of smooth spaces
	Cohesion of classical mechanics
	Cohesion of quantum mechanics
	Sublation

	Elastic substance
	Synthetic infinitesimal geometry
	Differential cohesion of the Cahier topos
	Crystalline cohomology

	Solid substance

	Nature
	Mechanics topos

	The Ausdehnungslehre
	Kant's categories
	Lauter einsen
	Spaces and quantities
	Parmenides
	Bridgman and identity
	Ludwig Gunther
	Dialectics of nature

